Answer:

Where
represent the force for each of the 5 cases
presented on the figure attached.
Explanation:
For this case the figure attached shows the illustration for the problem
We have an inverse square law with distance for the force, so then the force of gravity between Earth and the spaceship is lower when the spaceship is far away from Earth.
Th formula is given by:

Where G is a constant 
represent the mass for the earth
represent the mass for the spaceship
represent the radius between the earth and the spaceship
For this reason when the distance between the Earth and the Spaceship increases the Force of gravity needs to decrease since are inversely proportional the force and the radius, and for the other case when the Earth and the spaceship are near then the radius decrease and the Force increase.
Based on this case we can create the following rank:

Where
represent the force for each of the 5 cases
presented on the figure attached.
Answer:

Explanation:
By Einstein's Equation of photoelectric effect we know that

here we know that
= energy of the photons incident on the metal
= minimum energy required to remove photons from metal
= kinetic energy of the electrons ejected out of the plate
now we know that it requires 351 nm wavelength of photons to just eject out the electrons
so we can say

here we know that

now we have

now by energy equation above when photon of 303 nm incident on the surface





A = (Vf-Vi) / t,
a = (6-0)/3 = 2m/s^2,
F = ma = 2 * 2 = 4N
Humans can not see any of the above with their eyes
The initial speed of the vehicle before the collision is 8 m/s.
- Let the mass of the vehicle = m
- Let the initial speed of the vehicle stopped = u
- The initial speed of the vehicle parked at the red light = 0
<h3>Principle of conservation of linear momentum</h3>
- The initial speed of the vehicle before the collision is calculated by applying principle of conservation of linear momentum as follows;

Thus, the initial speed of the vehicle before the collision is 8 m/s.
Learn more about inelastic collision here: brainly.com/question/7694106