Answer:
129 J/Kg°C
Explanation:
Given :
Mass of gold, m = 1.2kg
Quantity of heat applied, Q = 3096 J
Temperature, t2 = 40°C
Temperature, t1 = 20°C
Change in temperature, dt = (40-20)°C = 20°C
Using the relation :
Q = mcdt
Where, C = specific heat capacity of gold
3096 = 1.2kg * C * 20°C
3096 J = 24kg°C * C
C = 3096 J / 24 kg°C
C = 129 J/Kg°C
Answer:
4.2 J
Explanation:
Specific heat capacity: This is defined as the amount of a heat required to rise a unit mass of a substance through a temperature of 1 K
From specific heat capacity,
Q = cmΔt.............................. Equation 1
Where Q = amount of energy absorbed or lost, c = specific heat capacity of water, m = mass of water, Δt = Temperature rise.
Given: m = 1 g = 0.001 kg, Δt = 1 °C
Constant : c = 4200 J/kg.°C
Substitute into equation 1
Q = 0.001×4200(1)
Q = 4.2 J.
Hence the energy absorbed or lost = 4.2 J
Answer:
heymelissa its amanda i hate ms spearman
Explanation:
yuh
Answer:
Sound intensity is measured with a sound level meter or Sound pressure Level (SPL) Meter.
Explanation:-
It measure sound intensity is the sound pressure level. The unit of measurement is decibels.
Using kinematic equation, v^2 - u^2 = 2as. 5^2 - 3^2 = 2a x 16. a = 0.5m/s^2. So particle will deaccelerate at 0.5m/s^2. ( v = final velocity, u= initial velocity, a= acceleration, s= displacement.)