Answer:
A small positively charged nucleus surrounded by revolving negatively charged electrons in fixed orbits
<h3>
Answer:</h3>
128 g HCl
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Reaction Mole Ratios
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Unbalanced] Mg (s) + HCl (aq) → MgCl (aq) + H₂ (g)
↓
[RxN - Balanced] 2Mg (s) + 2HCl (aq) → 2MgCl (aq) + H₂ (g)
[Given] 3.25 mol Mg
[Solve] x g HCl
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol Mg → 2 mol HCl
[PT] Molar Mass of H - 1.01 g/mol
[PT] Molar Mass of Cl - 35.45 g/mol
Molar Mass of HCl - 1.01 + 35.45 = 36.46 g/mol
<u>Step 3: Stoich</u>
- [S - DA] Set up:

- [S - DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
127.61 g HCl ≈ 128 g HCl
Answer:
The answer to your question is given after the questions so I just explain how to get it.
Explanation:
a)
Get the molecular weight of Phosphoric acid
H₃PO₄ = (3 x 1) + (31 x 1) + (16 x 4)
= 3 + 31 + 64
= 98 g
98 g ----------------- 1 mol
0.045 g --------------- x
x = (0.045 x 1) / 98
x = 0.045 / 98
x = 0.00046 moles or 4.6 x 10 ⁻⁴
b)
Molarity = 
Molarity = 
Molarity = 0.0013 or 1.31 x 10⁻³
c)
Formula C₁V₁ = C₂V₂
V₁ = C₂V₂ / C₁
Substitution
V₁ = (0.0013)(1) / 0.01
Simplification and result
V₁ = 0.0013 / 0.1
V₁ = 0.13 l = 130 ml
Nothing. Many salad dressings are a mixture of sugar and vinegar.
The heat will flow from copper to aluminum because Cu is at higher temperature. The heat liberated is -7.60kJ
When two metals at different temperatures are kept in contact, heat flows from hotter metal to colder metal until thermal equilibrium is reached.
Here Copper is at a temperature of 60 degree Celsius and aluminum is at 40 degree Celsius. Thus, heat will flow from Cu to Al.
In order to calculate the amount of heat liberated following calculations are required.
m1=262 g
T1=87 oC
Cp=0.385 J/g oC
T2=11.8 oC
The heat liberated can be expressed as follows:
Q=mCp(T2-T1)
Q=262 g*0.385 J/goC(11.8-87)oC
Q=-7585 J
=-7.60kJ
To learn more about heat check the link below:
brainly.com/question/13439286
#SPJ4