1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mila [183]
2 years ago
7

Determine the molarity of a 6.0 mole% sulfuric acid solution with SG-a 1.07 Note: Atomic Weight: S (32), O 16); H (O)

Chemistry
1 answer:
marin [14]2 years ago
5 0

Answer:

The molarity of a 6.0 mole% sulfuric acid solution is 2.8157 Molar.

Explanation:

Suppose there are 100 moles in solution:

Moles of sulfuric acid = 6% of 100 moles = 6 moles

Mass of 6 moles of sulfuric acid = 6 mol × 98 g/mol=588 g

Moles of water = 100%- 6% = 94%= 94 moles

Mass of water = 94 mol × 18 g/mol = 1692 g

Specific gravity of the solution ,S.G= 1.07

Density of solution = D

S.G=\frac{D}{d_w}

d_w = density of water = 1 g/mL

D=S.G\times d_w=1.07\times 1 g/mL=1.07 g/mL

Mass of the solution = 588 g + 1692 g = 2280 g

Volume of the solution = V

Volume = \frac{Mass}{Density}

=\frac{2280 g}{1.07 g/mL}=2130.84 mL=2.13084 L

1 mL = 0.001 L

Molarity = \frac{n}{V(L)}

n = number of moles of compound

V = volume of the solution in L

here we have ,n = 6 moles of sulfuric acid

V = 2.13084 L

So, the molarity of the solution is :

Molarity=\frac{6 mol}{2.13084 L}=2.8157 mol/L

You might be interested in
Need help asap with this chemistry if someone could help me
Burka [1]

Answer:

<h3>1)</h3>

Structure One:

  • N: -2
  • C: 0
  • O: +1

Structure Two:

  • N: 0
  • C: 0
  • O: -1

Structure Three:

  • N: -1
  • C: 0
  • O: 0.

Structure Number Two would likely be the most stable structure.

<h3>2)</h3>
  • All five C atoms: 0
  • All six H atoms to C: 0
  • N atom: +1.

The N atom is the one that is "likely" to be attracted to an anion. See explanation.

Explanation:

When calculating the formal charge for an atom, the assumption is that electrons in a chemical bond are shared equally between the two bonding atoms. The formula for the formal charge of an atom can be written as:

\text{Formal Charge} \\ = \text{Number of Valence Electrons in Element} \\ \phantom{=}-\text{Number of Chemical Bonds} \\\phantom{=} - \text{Number of nonbonding Lone Pair Electrons}.

For example, for the N atom in structure one of the first question,

  • N is in IUPAC group 15. There are 15 - 10 = 5 valence electrons on N.
  • This N atom is connected to only 1 chemical bond.
  • There are three pairs, or 6 electrons that aren't in a chemical bond.

The formal charge of this N atom will be 5 - 1 - 6 = -2.

Apply this rule to the other atoms. Note that a double bond counts as two bonds while a triple bond counts as three.

<h3>1)</h3>

Structure One:

  • N: -2
  • C: 0
  • O: +1

Structure Two:

  • N: 0
  • C: 0
  • O: -1

Structure Three:

  • N: -1
  • C: 0
  • O: 0.

In general, the formal charge on all atoms in a molecule or an ion shall be as close to zero as possible. That rules out Structure number one.

Additionally, if there is a negative charge on one of the atoms, that atom shall preferably be the most electronegative one in the entire molecule. O is more electronegative than N. Structure two will likely be favored over structure three.

<h3>2)</h3>

Similarly,

  • All five C atoms: 0
  • All six H atoms to C: 0
  • N atom: +1.

Assuming that electrons in a chemical bond are shared equally (which is likely not the case,) the nitrogen atom in this molecule will carry a positive charge. By that assumption, it would attract an anion.

Note that in reality this assumption seldom holds. In this ion, the N-H bond is highly polarized such that the partial positive charge is mostly located on the H atom bonded to the N atom. This example shows how the formal charge assumption might give misleading information. However, for the sake of this particular problem, the N atom is the one that is "likely" to be attracted to an anion.

5 0
3 years ago
24 grams of CH4 was added to the above reaction. Calculate the theoretical yield of CO2. A. 66 grams B. 33 grams c. 132 grams. D
Sonbull [250]

Answer:

Option A. 66 g

Explanation:

We'll begin by writing the balanced equation for the reaction. This is given below:

CH₄ + 2O₂ —> CO₂ + 2H₂O

Next, we shall determine the mass of CH₄ that reacted and the mass of CO₂ produced from the balanced equation. This is illustrated below:

Molar mass of CH₄ = 12 + (4×1)

= 12 + 4 = 16 g/mol

Mass of CH₄ from the balanced equation = 1 × 16 = 16 g

Molar mass of CO₂ = 12 + (16×2)

= 12 + 32 = 44 g/mol

Mass of CO₂ from the balanced equation = 1 × 44 = 44 g

SUMMARY:

From the balanced equation above,

16 g of CH₄ reacted to produce 44 g of CO₂.

Finally, we shall determine the theoretical yield of CO₂. this can be obtained as follow:

From the balanced equation above,

16 g of CH₄ reacted to produce 44 g of CO₂.

Therefore, 24 g of CH₄ will react to produce = (24 × 44) /16 = 66 g of CO₂.

Thus, the theoretical yield of CO₂ 66 g

8 0
3 years ago
The partial pressure of O2 in air at sea level is 0.21atm. The solubility of O2 in water at 20∘C, with 1 atm O2 pressure is 1.38
adell [148]

Answer:

1.21x10^{-3} M

Explanation:

Henry's law relational the partial pressure and the concentration of a gas, which is its solubility. So, at the sea level, the total pressure of the air is 1 atm, and the partial pressure of O2 is 0.21 atm. So 21% of the air is O2.

Partial pressure = Henry's constant x molar concentration

0.21 = Hx1.38x10^{-3}

H = \frac{0.21}{1.38x10^{-3} }

H = 152.17 atm/M

For a pressure of 665 torr, knowing that 1 atm = 760 torr, so 665 tor = 0.875 atm, the ar concentration is the same, so 21% is O2, and the partial pressure of O2 must be:

P = 0.21*0.875 = 0.1837 atm

Then, the molar concentration [O2], will be:

P = Hx[O2]

0.1837 = 152.17x[O2]

[O2] = 0.1837/15.17

[O2] = 1.21x10^{-3} M

7 0
3 years ago
In each of the following blanks, only enter a numerical value.
tatiyna

Answer:

1) 1,... 2

2) 18

3) n= 3 and I=1

Explanation:

1) when l= 0, its an s-sub-level, and only 1 orbital is possible which can carry only 2-electrons

2) the maximum number of electron is given by 2n^2= 2×3^2= 18

3) in 3p, the coefficient of p is the value of n= 3 and l-value of P is 1

5 0
2 years ago
Molarity to percent by mass. Convert 1.672 mol/L MgCl2(aq) solution to percent by mass of MgCl2 in the solution. The solution de
nignag [31]

Answer:

\%m/m=14\%

Explanation:

Hello!

In this case, since the molarity of magnesium chloride (molar mass = 95.211 g/mol) is 1.672 mol/L and we know the density of the solution, we can first compute the concentration in g/L as shown below:

[MgCl_2]=1.672\frac{molMgCl_2}{L}*\frac{95.211gMgCl_2}{1molMgCl_2}=159.2\frac{gMgCl_2}{L}

Next, since the density of the solution is 1.137 g/mL, we can compute the concentration in g/g as shown below:

[MgCl_2]=159.2\frac{gMgCl_2}{L}*\frac{1L}{1000mL}*\frac{1mL}{1.137g}=0.14

Which is also the by-mass fraction and in percent it turns out:

\%m/m=0.14*100\%\\\\\%m/m=14\%

Best regards!

6 0
2 years ago
Other questions:
  • Many free radicals combine to form molecules that do not contain any unpaired electrons. The driving force for the radical–radic
    10·1 answer
  • Which of the following bonds is the most reactive? A. C—C B. N—H C. O—O D. C—H
    7·1 answer
  • What is the most common acid and base?<br>and why?
    7·1 answer
  • What is the percentage of s-character in an sp hybrid? O 25% 50% o 75% O 66%
    15·1 answer
  • Dinitrogentetraoxide partially decomposes into nitrogen dioxide. A 1.00-L flask is charged with 0.0400 mol of N2O4. At equilibri
    10·1 answer
  • Use the perfodic table to fill in the table below.
    6·1 answer
  • SUMMARY: Write a 3-4 sentence summary about the Periodic Table.
    11·1 answer
  • Collision theory states that as molecules or ions bump into each other, a reaction will only occur if the collision has the corr
    9·1 answer
  • Which part of John Dalton’s theory was disproved by J.J. Thomson’s cathode-ray tube experiments?(1 point)
    14·1 answer
  • If the atoms that share electrons have an unequal attraction for the electrons, the bond is called
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!