Answer:
There are 1.260 moles for every 300.0 grams of Uranium
Explanation:
The answer is 0.405 M/s
- (1/3) d[O2]/dt = 1/2 d[N2]/dt
- d[O2]/dt = 3/2 d[N2]/dt
- d[O2]/dt = 3/2 × 0.27
- d[O2]/dt = 0.405 mol L^(-1) s^(-1)
<h3><u>Answer;</u></h3>
a) It allows electrons to flow from the anode to the cathode.
<h3><u>Explanation</u>;</h3>
- <em><u>Voltaic cell is an electrochemical cell in which a spontaneous chemical reaction produces the flow of electrons</u></em>.
- Electrons are produced by the oxidation reaction occurring at the anode. Electrons flow through the conducting wire from the anode to the cathode. At the cathode these electrons are used to reduce copper(II) ions to copper atoms.
- <em><u>A conducting wire or a wire play connects the two electrodes allowing electrons to flow from the anode to the cathode</u></em>.
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³