Answer: A mass of 124457.96 g ammonia is produced by reacting a 450 L sample of nitrogen gas at a temperature of 450 K and a pressure of 300 atm.
Explanation:
Given: Volume = 450 L
Temperature = 450 K
Pressure = 300 atm
Using ideal gas equation, moles of nitrogen are calculated as follows.
PV = nRT
where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T = tempertaure
Substitute values into the above formula as follows.

According to the given equation, 1 mole of nitrogen forms 2 moles of ammonia. So, moles of ammonia formed by 3654.08 moles of nitrogen is as follows.

As moles is the mass of substance divided by its molar mass. So, mass of ammonia (molar mass = 17.03 g/mol) is as follows.

Thus, we can conclude that a mass of 124457.96 g ammonia is produced by reacting a 450 L sample of nitrogen gas at a temperature of 450 K and a pressure of 300 atm.
It easier to remove electrons from a large element(bottom of the periodic table) because there further away from the nucleus.
Geologists use a metric ruler
Answer:
<u>Option B is correct</u>
Explanation:
Step 1: Define volatility
In chemistry, the term volatility, is a way to describe how readily a substance transitions from a liquid phase to a gas phase, also called evaporating.
At a given temperature and pressure, a substance with high volatility is more likely to evaporate more quickly , while a substance with a lower volatility is more likely to be a liquid or solid, so not to evaporate or slower.
The higher the volatility, the higher the (vapor) pressure of a compound. Increasing temperature means the vapor pressure will also increase,
Step 2: In this case:
⇒ O<u>ption A is false</u> because the pressure will be higher when volatility is higher.
<u>⇒ Option B is correct</u> because higher volatility means evaporating more quickly
<u>⇒ Option C is false</u> because higher volatility means higher pressure. When pressure increases, the surface tension decreases.
<u>⇒ Option D is false</u> because when the volatility is higher, the liquid/gas escape the container, easier, so there will be less resistance.