Answer:

Step-by-step explanation:
Since you want to get q only and q appears in both side of the equation. Try to isolate q to one side.
1) Expand 2(q+p)
2q + 2p = 1 + 5q
2) Move all q terms to one side
5q - 2q = 2p - 1
3q = 2p - 1
3) Divide 3 on both side (to isolate q)
q = 
Suppose we have a generic polynomial of the form:

To know how many roots the polynomial can have, the first thing you should do is observe the term of greatest exponent.
For this case, the term of greatest exponent is 2.
Therefore, the polynomial has 2 roots.
Answer:
You must observe the term of the polynomial with greater exponent.
Answer:
he went $9.56 over
Step-by-step explanation:
Okay, so a general rule for finding perpendicular lines in the form of y = mx + b is y = (-1/m) + b.
First, let's ignore b (-7) because we're going to find that later.
A perpendicular line to y = 4x + b is y = -1/4x + b.
Alright, so now let's plug in the values. They are in the form of (x,y), so let's plug them in accordingly.
3 = -1/4(4) + b
3 = -1 + b
b = 4
y = -1/4x + 4
So a line perpendicular to y = 4x - 7 is y = -1/4x + 4.