<span> i'm going to be slightly extra careful in showing each step. specific, ln [n / (n+a million) ]= ln n - ln(n+a million). So, we've sum(n=a million to infinity) ln [n / (n+a million) ] = lim(ok--> infinity) sum(n=a million to ok) ln [n / (n+a million) ] = lim(ok--> infinity) sum(n=a million to ok) [ln n - ln(n+a million)] = lim(ok--> infinity) (ln a million - ln 2) + (ln 2 - ln 3) + ... + (ln ok - ln(ok+a million)) = lim(ok--> infinity) (ln a million - ln(ok+a million)), for the reason that fairly much all the words cancel one yet another. Now, ln a million = 0 and lim(ok--> infinity) ln(ok+a million) is countless. So, the sum diverges to -infinity. IM NOT COMPLETELY SURE
</span>
Answer:
a record of all the mail that a mailbox identifies as Junk
Gradient =(y1-y2) / (x1-x2)
(-6-8)/(6-8)
:7
y:mx+c
8:7(8)+c
c:-48
y:7x-48
Answer:
y= -2x -8
Step-by-step explanation:
I will be writing the equation of the perpendicular bisector in the slope-intercept form which is y=mx +c, where m is the gradient and c is the y-intercept.
A perpendicular bisector is a line that cuts through the other line perpendicularly (at 90°) and into 2 equal parts (and thus passes through the midpoint of the line).
Let's find the gradient of the given line.
Gradient of given line
The product of the gradients of 2 perpendicular lines is -1.
(½)(gradient of perpendicular bisector)= -1
Gradient of perpendicular bisector
= -1 ÷(½)
= -1(2)
= -2
Substitute m= -2 into the equation:
y= -2x +c
To find the value of c, we need to substitute a pair of coordinates that the line passes through into the equation. Since the perpendicular bisector passes through the midpoint of the given line, let's find the coordinates of the midpoint.
Midpoint of given line
Substituting (-3, -2) into the equation:
-2= -2(-3) +c
-2= 6 +c
c= -2 -6 <em>(</em><em>-</em><em>6</em><em> </em><em>on both</em><em> </em><em>sides</em><em>)</em>
c= -8
Thus, the equation of the perpendicular bisector is y= -2x -8.