This is a very valid hypothesis for many reasons. One is that solar systems form from massive amounts of dust, ice, and debris that eventually form into planets and such. This means it is very possible for this 'excess material' if you will to have moved into orbit behind Neptune.
Answer:
Anions have more electrons than protons and so have a net negative charge. Cations have more protons than electrons and so have a net positive charge. Zwitterions are neutral and have both positive and negative charges at different locations throughout the molecule.
Explanation:
Answer:
<u>FALSE.</u>
Explanation:
Newton's third law states that :
- <em>Every action has equal and opposite reaction</em>
- <em>That is , the magnitude is the same but the directions are opposite</em>
- <em>The action reaction forces DONOT operate on the same body.</em>
For example ,
If a block is kept on the ground , the action force is the normal force acting on it due to the ground. <em>BUT , NOTE THAT : the reaction force isn't the gravitational force on the body ! It is the normal force acting on the ground due to the block !</em>
Thus,
we conclude that action and reaction forces donot act on the same body and therefore , this case has the <u>answer : FALSE </u>
An electromagnet is a type of magnet in which the magnetic field is produced using the current. The simplest form of an electromagnet is a wire wrapped around in a coil.
The strength of magnetic field of such magnet is given with this equation:

Where N is the number of loops in the coil, I is the strength of the current flowing through the coil, L is the length of the coil, and

is <span>permeability of the electromagnet core material.
From this equation, we can see that increasing both the current and number of loops will increase the strength of the magnet.
Both BLANKS should be
Increase. When you use the additional battery you will have more voltage and more voltage means more electricity.</span>
The answer is A.
Sy = 1650 x sin30.5 = 837.4 m toward south
Sx = 1650 x cos30.5 = 1421.7 m toward east