Q: The small piston of a hydraulic lift has a cross-sectional of 3.00 cm2 and its large piston has a cross-sectional area of 200 cm2. What downward force of magnitude must be applied to the small piston for the lift to raise a load whose weight is Fg = 15.0 kN?
Answer:
225 N
Explanation:
From Pascal's principle,
F/A = f/a ...................... Equation 1
Where F = Force exerted on the larger piston, f = force applied to the smaller piston, A = cross sectional area of the larger piston, a = cross sectional area of the smaller piston.
Making f the subject of the equation,
f = F(a)/A ..................... Equation 2
Given: F = 15.0 kN = 15000 N, A = 200 cm², a = 3.00 cm².
Substituting into equation 2
f = 15000(3/200)
f = 225 N.
Hence the downward force that must be applied to small piston = 225 N
Answer:
Explanation:
Given:
- Mass of 1st body =

- Mass of 2nd body =

To Find:
- Magnitude of gravitational force
Solution:
Here, we have a formula
<u>Substituting the values</u>




Know More:
The applied formula for the above solution is

where,
- F
= Gravitational force - G = Gravitational constant
- M
= mass of 1st body - M
= mass of 2nd body - r = distance between two bodies
The amount of electric charge that resides on each capacitor once it is fully charged is 0.37 C.
<h3>
Total capacitance of the circuit</h3>
The total capacitance of the circuit is calculated as follows;
Capacitors in series;
1/Ct = 1/8 + 1/7.5
1/Ct = 0.25833
Ct = 3.87 mF
Capacitors is parallel;
Ct = 3.87 mF + 12 mF + 15 mF
Ct = 30.87 mF
Ct = 0.03087 F
<h3>Charge in each capacitor</h3>
Q = CV
Q = 0.03087 x 12
Q = 0.37 C
Thus, the amount of electric charge that resides on each capacitor once it is fully charged is 0.37 C.
Learn more about capacitors here: brainly.com/question/13578522
#SPJ1
Answer: 1
Explanation:
Given
Tension is the string 
mass of object 
Tension is greater than the weight of the object i.e. elevator is moving upward
we can write
