Answer:
The level of the root beer is dropping at a rate of 0.08603 cm/s.
Explanation:
The volume of the cone is :
Where, V is the volume of the cone
r is the radius of the cone
h is the height of the cone
The ratio of the radius and the height remains constant in overall the cone.
Thus, given that, r = d / 2 = 10 / 2 cm = 5 cm
h = 13 cm
r / h = 5 / 13
r = {5 / 13} h
Also differentiating the expression of volume w.r.t. time as:
Given: = -4 cm³/sec (negative sign to show leaving)
h = 10 cm
So,
<u>The level of the root beer is dropping at a rate of 0.08603 cm/s.</u>
The answer to this statement is true!
From the measured wavelength from diagram, the frequency of the sound is 6660 Hz.
<h3>What is the frequency of a wave?</h3>
The frequency of a wave is the number of complete oscillation per second completed by a wave.
Frequency is related to wavelength and speed by the following formula:
- Frequency = velocity/wavelength
Velocity of sound in air = 330 m/s
The measured wavelength = 5.0 cm = 0.05 m
Frequency = 330/0.05 = 6660 Hz
Therefore, based on the measured wavelength from diagram, the frequency of the sound is 6660 Hz.
Learn more about frequency of sound at: https://brainly.in/question/15373132
#SPJ1
Answer: 33 mm
Explanation:
Given
Diameter of the tank, d = 9 m, so that, radius = d/2 = 9/2 = 4.5 m
Internal pressure of gas, P(i) = 1.5 MPa
Yield strength of steel, P(y) = 340 MPa
Factor of safety = 0.3
Allowable stress = 340 * 0.3 = 102 MPa
σ = pr / 2t, where
σ = allowable stress
p = internal pressure
r = radius of the tank
t = minimum wall thickness
t = pr / 2σ
t = 1.5*10^6 * 4.5 / 2 * 102*10^6
t = 0.033 m
t = 33 mm
The minimum thickness of the wall required is therefore, 33 mm