<h3>
flammable liquids will catch on fire and burn easily at normal working temperatures. Combustible liquids have the ability to burn at temperatures that are usually above working temperatures.</h3>
<em>Hope this helped! :)</em>
Step 1: Write Imbalance Equation
CH₃CHO + O₂ → CO₂ + H₂O
Step 2: Balance Carbon Atoms:
There are 2 carbon atoms at reactant side and one at product side. So multiply CO₂ with 2 to balance them. i.e.
CH₃CHO + O₂ → 2 CO₂ + H₂O
Step 3: Balance Hydrogen Atoms:
There are 4 hydrogen atoms at reactant side and 2 Hydrogen atoms at product side. So, multiply H₂O by 2 to balance Hydrogen on both sides. i.e.
CH₃CHO + O₂ → 2 CO₂ + 2 H₂O
Step 4: Balance Oxygen Atoms:
There are 3 Oxygen atoms at reactant side and 6 Oxygen atoms at product side. In order to balance them multiply O₂ on reactant side by 2.5 (5/2). i.e
CH₃CHO + 5/2 O₂ → 2 CO₂ + 2 H₂O
Step 6: Eliminate Fraction:
Multiply overall equation by 2 to eliminate fraction. i.e.
2 CH₃CHO + 5 O₂ → 4 CO₂ + 4 H₂O
Explanation:
Oogenesis can be defined as a process of differentiation of egg cell (ovum), into a mature ovum that further develops after fertilization. In humans, oogenesis begins in the early stage of embryonic development, during whcih primary oocyte performs meiosis I and forms secondary oocyte.
Answer:
Mass of Ca(OH)₂ required = 0.09 g
Explanation:
Given data:
Volume of HNO₃ = 25 mL (25/1000 = 0.025 L)
Molarity of HNO₃ = 0.100 M
Mass of Ca(OH)₂ required = ?
Solution:
Chemical equation;
Ca(OH)₂ + 2HNO₃ → Ca(NO)₃ + 2H₂O
Number of moles of HNO₃:
Molarity = number of moles / volume in L
0.100 M = number of moles / 0.025 L
Number of moles = 0.100 M ×0.025 L
Number of moles = 0.0025 mol
Now we will compare the moles of Ca(OH)₂ with HNO₃ from balance chemical equation.
HNO₃ : Ca(OH)₂
2 : 1
0.0025 : 1/2×0.0025 = 0.00125
Mass of Ca(OH)₂:
Mass = number of moles × molar mass
Mass = 0.00125 mol × 74.1 g/mol
Mass = 0.09 g