1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoundrel [369]
3 years ago
15

how long does it take sound to travel the distance between the two microphones? Given.:wave 1 of microphone 1 has T=2 sec and f=

1/2Hz and the speed of propagation of the sound is 330m/s​

Physics
1 answer:
Maksim231197 [3]3 years ago
8 0

Answer:

0.00583 seconds

Explanation:

You might be interested in
Which statement is the correct representation of these electric field lines?
irinina [24]
C . plate a is negatively charged and plate b is positively charged
6 0
3 years ago
Read 2 more answers
What is the net force needed to accelerate a 21.4 kg grocery sack upward at 1.5 m/s2?
marshall27 [118]

Answer:

32.1 N Please Give Brainliest

Explanation:

force = mass x acceleration

8 0
2 years ago
If mars has an orbital period of 1.84 years how far from the sun is it and how
EastWind [94]
<span>141.6 million mi,and idk what u mean by how</span>
6 0
3 years ago
I NEED HELP PLEASE, THANKS! :)
mrs_skeptik [129]

Answer:

1. Largest force: C;  smallest force: B; 2. ratio = 9:1

Explanation:

The formula for the force exerted between two charges is

F=K\dfrac{ q_{1}q_{2}}{r^{2}}

where K is the Coulomb constant.

q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.

For simplicity, let's combine Kq₁q₂ into a single constant, k.

Then, we can write  

F=\dfrac{k}{r^{2}}

1. Net force on each particle

Let's

  • Call the distance between adjacent charges d.
  • Remember that like charges repel and unlike charges attract.

Define forces exerted to the right as positive and those to the left as negative.

(a) Force on A

\begin{array}{rcl}F_{A} & = & F_{B} + F_{C} + F_{D}\\& = & -\dfrac{k}{d^{2}}  - \dfrac{k}{(2d)^{2}}  +\dfrac{k}{(3d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(-1 - \dfrac{1}{4} + \dfrac{1}{9} \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-36 - 9 + 4}{36} \right)\\\\& = & \mathbf{-\dfrac{41}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(b) Force on B

\begin{array}{rcl}F_{B} & = & F_{A} + F_{C} + F_{D}\\& = & \dfrac{k}{d^{2}}  - \dfrac{k}{d^{2}}  + \dfrac{k}{(2d)^{2}}\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1}{4} \right)\\\\& = &\mathbf{\dfrac{1}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(C) Force on C

\begin{array}{rcl}F_{C} & = & F_{A} + F_{B} + F_{D}\\& = & \dfrac{k}{(2d)^{2}} + \dfrac{k}{d^{2}}  + \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( \dfrac{1}{4} +1 + 1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{1 + 4 + 4}{4} \right)\\\\& = & \mathbf{\dfrac{9}{4} \dfrac{k}{d^{2}}}\\\\\end{array}

(d) Force on D

\begin{array}{rcl}F_{D} & = & F_{A} + F_{B} + F_{C}\\& = & -\dfrac{k}{(3d)^{2}}  - \dfrac{k}{(2d)^{2}}  - \dfrac{k}{d^{2}}\\& = & \dfrac{k}{d^{2}}\left( -\dfrac{1}{9} - \dfrac{1}{4} -1 \right)\\\\& = & \dfrac{k}{d^{2}}\left(\dfrac{-4 - 9 -36}{36} \right)\\\\& = & \mathbf{-\dfrac{49}{36} \dfrac{k}{d^{2}}}\\\\\end{array}

(e) Relative net forces

In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.

F_{A} : F_{B} : F_{C} : F_{D}  =  \dfrac{41}{36} : \dfrac{1}{4} : \dfrac{9}{4} : \dfrac{49}{36}\ = 41 : 9 : 81 : 49\\\\\text{C experiences the largest net force.}\\\text{B experiences the smallest net force.}\\

2. Ratio of largest force to smallest

\dfrac{ F_{C}}{ F_{B}} = \dfrac{81}{9} = \mathbf{9:1}\\\\\text{The ratio of the largest force to the smallest is $\large \boxed{\mathbf{9:1}}$}

7 0
3 years ago
Relativistic velocity is of the order of _____ of velocity of light A- 1/15th of the velocity of light B-1/20th of the velocity
ratelena [41]

Answer:

Relativistic velocity is of the order of 1/10th of the velocity of light

Explanation:

We define relativistic speed (or velocity) as a speed that is a significant fraction of the speed of light: c = 3*10^8 m/s

Such that for these speeds, the special relativity theory starts to apply (the relativity effects starts to apply).

Usually, we define relativistic speeds as those that are of the order (or larger) of c/10, which is one-tenth of the speed of light.

Then the correct option is C:

Relativistic velocity is of the order of 1/10th of the velocity of light

4 0
3 years ago
Other questions:
  • Light from the sun travels through space to earths atmosphere. Which will light waves do when they move from empty space into ma
    13·1 answer
  • Lena is playing with a remote-controlled car in her backyard. She knows that the car uses a wheel and axle to move. What is the
    12·1 answer
  • A high diver of mass 60.0 kg steps off a board 10.0 m above the water and falls vertical to the water, starting from rest. If he
    9·1 answer
  • HELP ASAP VERY IMPORTANT.
    8·1 answer
  • A circuit with two or more branches for current to flow
    8·1 answer
  • A 32.5 g cube of aluminum initially at 45.8 °C is submerged into 105.3 g of water at 15.4 °C. What is the final temperature of b
    14·1 answer
  • A police car drives 100 miles in 75 minutes. What is its average speed in miles per hour?
    12·1 answer
  • After viewing the demo, what can you say about the buoyancy/density of warm water compared to the buoyancy/density of colder wat
    10·2 answers
  • Two bumper cars collide into each other and each car jolts backwards. which one of Newton's laws is this?
    5·1 answer
  • In the fishbowl, the glass, water, rocks, and plastic plants are in thermal equilibrium. This situation means the temperature of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!