Answer:
the net toque is τ=8.03* 10⁻⁴ N*m
Explanation:
Assuming the disk has constant density ρ, the moment of inertia I of is
I = ∫r² dm
since m = ρ*V = ρπR² h , then dm= 2ρπh r dr
thus
I = ∫r²dm = ∫r²2ρπh r dr =2ρπh ∫r³ dr = 2ρπh (R⁴/4- 0⁴/4)= ρπhR⁴ /2= mR²/2
replacing values
I = mR²/2= 0.017 kg * (0.06 m)²/2 = 3.06 *10⁻⁵ kg*m²
from Newton's second law applied to rotational motion
τ= Iα , where τ=net torque and α= angular acceleration
since the angular velocity ω is related with the angular acceleration through
ω= ωo + α*t → α =(ω-ωo)/t = (21 rad/s-0)/0.8 s = 26.25 rad/s²
therefore
τ= Iα= 3.06 *10⁻⁵ kg*m²*26.25 rad/s² = 8.03* 10⁻⁴ N*m
They have similar physical and chemical properties because of thier valence electrons
Answer:
the velocity is zero, the acceleration is directed downward, and the force of gravity acting on the ball is directed downward
Explanation:
Is this exercise in kinematics
v = v₀ - g t
where g is the acceleration of the ball, which is created by the attraction of the ball to the Earth.
At the highest point
velocity must be zero.
The acceleration depends on the Earth therefore it is constant at this point and with a downward direction.
The force of the earth on the ball is towards the center of the Earth, that is, down
all other alternatives are wrong
Answer:
The mass of the ice block is equal to 70.15 kg
Explanation:
The data for this exercise are as follows:
F=90 N
insignificant friction force
x=13 m
t=4.5 s
m=?
applying the equation of rectilinear motion we have:
x = xo + vot + at^2/2
where xo = initial distance =0
vo=initial velocity = 0
a is the acceleration
therefore the equation is:
x = at^2/2
Clearing a:
a=2x/t^2=(2x13)/(4.5^2)=1.283 m/s^2
we use Newton's second law to calculate the mass of the ice block:
F=ma
m=F/a = 90/1.283=70.15 kg