Answer:
w = 4,786 rad / s
, f = 0.76176 Hz
Explanation:
For this problem let's use the concept of angular momentum
L = I w
The system is formed by the two discs, during the impact the system remains isolated, we have the forces are internal, this implies that the external torque is zero and the angular momentum is conserved
Initial Before sticking
L₀ = 0 + I₂ w₂
Final after coupling
= (I₁ + I₂) w
The moments of inertia of a disk with an axis of rotation in its center are
I = ½ M R²
How the moment is preserved
L₀ = 
I₂ w₂ = (I₁ + I₂) w
w = w₂ I₂ / (I₁ + I₂)
Let's reduce the units to the SI System
d₁ = 60 cm = 0.60 m
d₂ = 40 cm = 0.40 m
f₂ = 200 min-1 (1 min / 60 s) = 3.33 Hz
Angular velocity and frequency are related.
w₂ = 2 π f₂
w₂ = 2π 3.33
w₂ = 20.94 rad / s
Let's replace
w = w₂ (½ M₂ R₂²) / (½ M₁ R₁² + ½ M₂ R₂²)
w = w₂ M₂ R₂² / (M₁ R₁² + M₂ R₂²)
Let's calculate
w = 20.94 8 0.40² / (12 0.60² + 8 0.40²)
w = 20.94 1.28 / 5.6
w = 4,786 rad / s
Angular velocity and frequency are related.
w = 2π f
f = w / 2π
f = 4.786 / 2π
f = 0.76176 Hz
A.900 watts That would be your correct answer
Complete question:
if two point charges are separated by 1.5 cm and have charge values of +2.0 and -4.0 μC, respectively, what is the value of the mutual force between them.
Answer:
The mutual force between the two point charges is 319.64 N
Explanation:
Given;
distance between the two point charges, r = 1.5 cm = 1.5 x 10⁻² m
value of the charges, q₁ and q₂ = 2 μC and - μ4 C
Apply Coulomb's law;

where;
F is the force of attraction between the two charges
|q₁| and |q₂| are the magnitude of the two charges
r is the distance between the two charges
k is Coulomb's constant = 8.99 x 10⁹ Nm²/C²

Therefore, the mutual force between the two point charges is 319.64 N
Answer:
The magnetic field strength inside the solenoid is
.
Explanation:
Given that,
Radius = 2.0 mm
Length = 5.0 cm
Current = 2.0 A
Number of turns = 100
(a). We need to calculate the magnetic field strength inside the solenoid
Using formula of the magnetic field strength
Using Ampere's Law

Where, N = Number of turns
I = current
l = length
Put the value into the formula


(b). We draw the diagram
Hence, The magnetic field strength inside the solenoid is
.
Answer:
Answer
Explanation:
A solid because each solids has various shapes and volume. scientist uses variety of tools such as, Cylinder,scaler, etc to differentiate the solids.