Answer:
a. Wet, soft dough at 85 degrees Fahrenheit
Explanation:
Fermentation is an anaerobic process that transforms starches into simpler substances. The rising of dough is due to fermentation.
According to Harold McGee, 85°F (29°C) is the best temperature for fermenting bread dough. Temperatures below 85°F (29°C) take much longer to ferment, and temperatures higher than that result into unpleasant flavors in the dough.
Wet, soft dough is usually more preferable because it produces a softer bread.
Answer:
Speed at which the ball passes the window’s top = 10.89 m/s
Explanation:
Height of window = 3.3 m
Time took to cover window = 0.27 s
Initial velocity, u = 0m/s
We have equation of motion s = ut + 0.5at²
For the top of window (position A)

For the bottom of window (position B)


We also have

Solving

So after 1.11 seconds ball reaches at top of window,
We have equation of motion v = u + at

Speed at which the ball passes the window’s top = 10.89 m/s
Answer:
frequency of the sound = f = 1,030.3 Hz
phase difference = Φ = 229.09°
Explanation:
Step 1: Given data:
Xini = 0.540m
Xfin = 0.870m
v = 340m/s
Step 2: frequency of the sound (f)
f = v / λ
λ = Xfin - Xini = 0.870 - 0.540 = 0.33
f = 340 / 0.33
f = 1,030.3 Hz
Step 3: phase difference
phase difference = Φ
Φ = (2π/λ)*(Xini - λ) = (2π/0.33)* (0.540-0.33) = 19.04*0.21 = 3.9984
Φ = 3.9984 rad * (360°/2π rad)
Φ = 229.09°
Hope this helps!
Answer:
C-D
Explanation:
As you can see from the graph, the distance from A to B was from 0 m to 6 m in a duration of 3 seconds.
Divide 6 meters by 3 seconds to find the speed:
6 ÷ 3 = 2 m/s
B-C is not moving due to a straight line as said in the graph, so speed is
0 m/s.
There is also C-D since the car traveled from a distance of 9 meters
(6 -(-3) = 9) in 3 seconds too. (NOTE: The graph line going down does not mean it is slowing down, but rather going to a certain distance like going backwards)
Divide 9 meters by 3 seconds to get the speed:
9 ÷ 3 = 3 m/s
Between A-B, B-C, and C-D, C-D has the fastest speed recorded with 3 m/s.
A-D does not count here as the line has no connection between point A and point D.
Cheers!
Answer:
(a) 
(b) 
Explanation:
Given:
- density of hydraulic oil,

- radius of input piston,

- radius of output plunger,

- force to be supported,

(a)
<u><em>Condition:</em></u><em>The bottom surfaces of piston and plunger at the same level.</em>
According to Pascal's law the pressure of a fluid is exerted equally in all directions against the walls of its container.
Mathematically:

putting respective values



(b)
<u><em>Condition:</em></u><em>The bottom surface of the output plunger is 1.30 m above that of the input piston.</em>
Given:

Now,


