1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karolina [17]
3 years ago
14

There are 5510 lines per centimeter in a grating that is used with light whose wavelegth is 467 nm. A flat observation screen is

located 1.03 m from the grating. What is the minimum width that the screen must have so the centers of all the principal maxima formed on either side of the central maximum fall on the screen
Physics
1 answer:
Mademuasel [1]3 years ago
4 0

Answer:

1.696 nm

Explanation:

For a diffraction grating, dsinθ = mλ where d = number of lines per metre of grating = 5510 lines per cm = 551000 lines per metre and λ = wavelength of light = 467 nm = 467 × 10⁻⁹ m. For a principal maximum, m = 1. So,

dsinθ = mλ = (1)λ = λ

dsinθ = λ

sinθ = λ/d.

Also tanθ = w/D where w = distance of center of screen to principal maximum and D = distance of grating to screen = 1.03 m

From trig ratios 1 + cot²θ = cosec²θ

1 + (1/tan²θ) = 1/(sin²θ)

substituting the values of sinθ and tanθ we have

1 + (D/w)² = (d/λ)²

(D/w)² = (d/λ)² - 1

(w/D)² = 1/[(d/λ)² - 1]

(w/D) = 1/√[(d/λ)² - 1]

w = D/√[(d/λ)² - 1] = 1.03 m/√[(551000/467 × 10⁻⁹ )² - 1] = 1.03 m/√[(1179.87 × 10⁹ )² - 1] = 1.03 m/1179.87 × 10⁹  = 0.000848 × 10⁻⁹ = 0.848 × 10⁻¹² m = 0.848 nm.

w is also the distance from the center to the other principal maximum on the other side.

So for both principal maxima to be on the screen, its minimum width must be 2w = 2 × 0.848 nm = 1.696 nm

So, the minimum width of the screen must be 1.696 nm

You might be interested in
Who invented the telephone?
krok68 [10]
<h2>Answer:</h2><h3><em><u>Alexander Graham Bell</u></em></h3><h2>Explanation:</h2>

Alexander Graham Bell is often credited as the inventor of the telephone since he was awarded the first successful patent.

5 0
3 years ago
Read 2 more answers
Recall that the blocks can only move along the x axis. the x components of their velocities at a certain moment are v1x and v2x.
Contact [7]
The center of mass is given with this formula:
x_c=\frac{\sum_{n=1}^{n=i}m_ix_i}{M}
Velocity is:
v=\frac{dv}{dt}
So, for the velocity of the center of mass we have:
\frac{dx_c}{dt}=\frac{\sum_{n=1}^{n=i}d(m_ix_i)}{Mdt}\\&#10;v_c=\frac{\sum_{n=1}^{n=i}p_i}{M}\\
In our case it is:
v_{xc}=\frac{m_1v_{x1}+m_2v_{x2}}{m_1+m_2}
 
5 0
3 years ago
Which equation correctly represents the gravitational potential energy of a system?​
Sunny_sXe [5.5K]
E = mass x gravity x height
5 0
3 years ago
You can use any coordinate system you like in order to solve a projectile motion problem. To demonstrate the truth of this state
posledela

Answer:

a)  y₂ = 49.1 m ,    t = 1.02 s , b)   y = 49.1 m , t= 1.02 s

Explanation:

a) We will solve this problem with the missile launch kinematic equations, to find the maximum height, at this point the vertical speed is zero

            v_{y}² = v_{oy}² - 2 g (y –yo)

The origin of the coordinate system is on the floor and the ball is thrown from a height

           y-yo = v_{oy}² /2 g&#10;            y- 0 = 10.0²/2 9.8&#10;            y - 0 = 5.10 m&#10;            &#10;The height from the ground is the height that rises from the reference system plus the depth of the ground from the reference system&#10;             y₂ = 5.1 + 44&#10;             y₂ = 49.1 m&#10;Let's use the other equation to find the time&#10;              [tex]v_{y} = v_{oy} - g t

              t = v_{oy} / g

              t = 10 / 9.8

              t = 1.02 s

b) the maximum height

            y- 44.0 = v_{y}² / 2 g

            y - 44.0 = 5.1

            y = 5.1 +44.0

            y = 49.1 m

The time is the same because it does not depend on the initial height

              t = 1.02 s

7 0
3 years ago
Where are bar magnets the strongest?
Alecsey [184]

Answer:

The magnetic field is strongest at the center and weakest between the two poles just outside the bar magnet. The magnetic field lines are densest at the center and least dense between the two poles just outside the bar magnet.

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • Mr. Hoffman, a science teacher, drove 10 miles to school from home in 20 minutes. He drove the 10 miles home in 30 min. His aver
    12·2 answers
  • At what point in its trajectory does a batted baseball have its minimum speed? If air resistance can be neglected, how does this
    8·1 answer
  • A metal disk of radius 4.0 cm is mounted on a frictionless axle. Current can flow through the axle out along the disk, to a slid
    9·1 answer
  • Punishment is used to
    5·1 answer
  • What unbalanced force is needed to give a 976 kg vehicle an acceleration of 2.50 m/s2? ASAP
    11·1 answer
  • Match the correct center and scale factor to each figure.
    12·1 answer
  • Which of the following organelles is in plant cells, but not animal cells?
    5·2 answers
  • Momentum is mass times velocity, so another way to think of momentum is ____ in motion.
    9·1 answer
  • A circular disk is rotating about a central axis with an angular velocity which is increasing at a constant rate. Point 1 on the
    11·1 answer
  • Two charges with a certain distance apart have an electrostatic force of 400 N acting
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!