1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
3 years ago
15

Car 1 goes around a level curve at a constant speed of 65 km/h . The curve is a circular arc with a radius of 95 m . Car 2 goes

around a different level curve at twice the speed of Car 1. How much larger will the radius of the curve that Car 2 travels on have to be in order for both cars to have the same centripetal acceleration
Physics
1 answer:
Arte-miy333 [17]3 years ago
4 0

Answer:

The radius of the curve that Car 2 travels on is 380 meters.

Explanation:

Speed of car 1, v_1=65\ km/h

Radius of the circular arc, r_1=95\ m

Car 2 has twice the speed of Car 1, v_2=130\ km/h

We need to find the radius of the curve that Car 2 travels on have to be in order for both cars to have the same centripetal acceleration. We know that the centripetal acceleration is given by :

a=\dfrac{v^2}{r}

According to given condition,

\dfrac{v_1^2}{r_1}=\dfrac{v_2^2}{r_2}

\dfrac{65^2}{95}=\dfrac{130^2}{r_2}

On solving we get :

r_2=380\ m

So, the radius of the curve that Car 2 travels on is 380 meters. Hence, this is the required solution.

You might be interested in
A 0.25 kg ball is suspended from a light 0.65 m string as shown. The string makes an angle of 31° with the vertical. Let U = 0 w
steposvetlana [31]

Explanation:

a) The height of the ball h with respect to the reference line is

h = L - L\cos{31°} = L(1 - \cos{31°})

so its initial gravitational potential energy U_0 is

U = mgh = mgL(1 - \cos{31°})

\:\:\:\:\:=(0.25\:\text{kg})(9.8\:\text{m/s}^2)(0.65\:\text{m})(1 - \cos{31})

\:\:\:\:\:=0.23\:\text{J}

b) To find the speed of the ball at the reference point, let's use the conservation law of energy:

\Delta{K} + \Delta{U} = 0 \Rightarrow K_0 + U_0 = K + U

We know that the initial kinetic energy K_0, as well as its final gravitational potential energy U are zero so we can write the conservation law as

mgL(1 - \cos{31°}) = \frac{1}{2}mv^2

Note that the mass gets cancelled out and then we solve for the velocity v as

v = \sqrt{2gL(1 - \cos{31°})}

\:\:\:\:\:= \sqrt{2(9.8\:\text{m/s}^2)(0.65\:\text{m})(1 - \cos{31°})}

\:\:\:\:\:= 1.3\:\text{m/s}

5 0
3 years ago
Read 2 more answers
Which organisms break down dead matter and waste into nonliving elements?
Alekssandra [29.7K]
Decomposers is the correct answer. ( I got your back bro)
4 0
3 years ago
Read 2 more answers
The car travels 25 miles in the first 0.5 hours
Westkost [7]

Answer:

\huge\boxed{\sf v = 50\ miles / hr}

Explanation:

<u>Given Data:</u>

Distance = S = 25 miles

Time = t = 0.5 hours

<u>Required:</u>

Speed = v = ?

<u>Formula:</u>

v = S/t

<u>Solution:</u>

v = 25 / 0.5

v = 50 miles / hr

\rule[225]{225}{2}

Hope this helped!

<h3>~AnonymousHelper1807</h3>
4 0
3 years ago
During what stage of engine operation does the piston move upward in the cylinder and force the burned gases out of the cylinder
trasher [3.6K]
*l Take in air and fuel (Intake)
 *l Compress (squeeze) the air and fuel (Compression)
*l Ignite and burn the air-and-fuel mixture (Power)
 *l Get rid of the burned fuel gases (Exhaust)The Answer is C.Exhaust

5 0
3 years ago
Two cars, initially at rest and 5 km apart at t=0 , simultaneously move toward each other. Car A travels at a constant speed of
Anastasy [175]

Answer:

<em>d. 268 s</em>

Explanation:

<u>Constant Speed Motion</u>

An object is said to travel at constant speed if the ratio of the distance traveled by the time taken is constant.

Expressed in a simple equation, we have:

\displaystyle v=\frac{d}{t}

Where  

v = Speed of the object

d = Distance traveled

t  = Time taken to travel d.

From the equation above, we can solve for d:

d = v . t

And we can also solve it for t:

\displaystyle t=\frac{d}{v}

Two cars are initially separated by 5 km are approaching each other at relative speeds of 55 km/h and 12 km/h respectively. The total speed at which they are approaching is 55+12 = 67 km/h.

The time it will take for them to meet is:

\displaystyle t=\frac{5}{67}

t = 0.0746 hours

Converting to seconds: 0.0746*3600 = 268.56

The closest answer is d. 268 s

8 0
3 years ago
Other questions:
  • What is a synonym for inertia?
    14·2 answers
  • Our Sun emits most of its radiation at a wavelength of 550 nm. If a star were 3.50 times hotter than our Sun, it would emit most
    12·1 answer
  • Wires diameters are usually specified by a number called the gauge. The smaller gauge wire has a larger diameter. For example, a
    11·1 answer
  • A girl coasts down a hill on a sled, reaching
    12·1 answer
  • What is the taste of the resulting mixture?
    15·2 answers
  • A series RLC circuit with a resistance of 121.0 Ω has a resonance angular frequency of 5.1 ✕ 105 rad/s. At resonance, the voltag
    5·1 answer
  • When a wire with a current is placed in a magnetic field,
    13·2 answers
  • If y gets smaller as x gets bigger, x and y have a?
    12·2 answers
  • HELP: I’ve been stuck on this problem for a while now.
    5·1 answer
  • Billy drops a ball from a height of 1 m. The ball bounces back to a height of 0.8 m, then
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!