Answer:
547 m
Explanation:
From law of motion
s = ut + ½at²
Where "t" is Time taken to reach Earth
s= distance= 182 m
a= vertical acceleration = 5.82 m / s 2
U= initial velocity in vertical position = 0
182= ½ × 5.82t²
t²=( 2× 182)/ 5.82
= 364/5.82
= 62.54
t= √62.54
t= 7.908s
horizontal distance travelled = speed x time
Horizontal speed= 72.6 m / s
horizontal distance travelled =72.6× 7.908
= 547 m
Hence, the survivor will it hit the waves at 547 m away
Below are the choices that can be found elsewhere:
A. (4.9 × 10-14 newtons) · tan(30°)
<span>B. (4.9 × 10-14 newtons) · sin(30°) </span>
<span>C. (4.9 × 10-14 newtons) · cos(30°) </span>
<span>D. (4.9 × 10-14 newtons) · arctan(30°) </span>
<span>E. (4.9 × 10-14 newtons) · arccos(30°)
</span>
<span>Force is proportional to the angle made by the velocity with respect to the magnetic field. It is maximum when velocity is perpendicular to the magnetic field and minimum when the velocity is parallel to the magnetic field. It is proportional to sin of the angle. In this problem it will be proportional to sin(30)</span>
Answer:
6
Explanation:
The median is found by listing the numbers in order numerically and finding the one that is right in the middle. In this case you have 1, 3, 5, 6, 7, 12, 15 where the middle term is 6.
Answer:
a)At the mean position
b)At the extremes positions
Explanation:
Given that mass is having oscillation motion.
We know that
1. At the mean position -The velocity of the mass is maximum and the acceleration of the mass is minimum.The net force on the mass will be zero.
2. At the extreme position-The velocity of the mass is minimum and the acceleration of the mass is maximum.The net force on the mass will not be zero.
Therefore
a)At the mean position
b)At the extremes positions