Answer:
The fall in temperature of the liquid is 8.6 +/- 0.1 ⁰C
Explanation:
Given;
initial temperature of the liquid, t₁ = 76.3 +/- 0.4⁰C
final temperature of the liquid, t₂ = 67.7 +/- 0.3⁰C
The change in temperature of the liquid is calculated as;
Δt = t₂ - t₁
Δt = (67.7 - 76.3) +/- (0.3 - 0.4)
Δt = (-8.6) +/- (-0.1)
Δt = 8.6 +/- 0.1 ⁰C
Therefore, the fall in temperature of the liquid is 8.6 +/- 0.1 ⁰C
Basically, when someone is resting in an accelerated vehicle without restraint from a seatbelt, the force of stopping the vehicle will be when inertia occurs, and that force of the vehicle coming to a stop will affect the passenger (without a seatbelt/restraint from another force or object) greatly by throwing them.
For example;
If I were to be riding in a vehicle (without a seatbelt) that's accelerating at 40 m/s^2 and it suddenly gets slammed on the breaks, I will be thrown forward from inside the vehicle.
I hope this helps!
The specific gravity of the object’s material is 5.09.
<h3>To calculate the specific gravity of the object:</h3>
Weight difference = 9 - 7.2 = 1.8 N = Buoyant force of water
Buoyant Force in water(Fb) = density of water x g x volume of the body(Vb)
1.8 = 1000 x 9.81 x Vb
Vb = 1.8/9810 cubic meter
Now, in the air;
Weight of body = mg = 9 N
Mass of body,m = 9/9.81 Kg
So,
Density of body = m/ Vb
= 9/9.81 ÷ 1.8/9810
= 5094.44 kg per cubic meter
The specific gravity of body = density of body ÷ density of water
= 5094.44 ÷ 1000
= 5.09
Therefore, Specific gravity of body = 5.09
Learn more about Specific gravity here:
brainly.com/question/13258933
#SPJ4
The free fall of the phone is an uniformly accelerated motion toward the ground, with constant acceleration equal to

So, assuming the downward direction as positive direction of the motion, since the phone starts from rest the distance covered by the phone after a time t is given by

And if we substitute t=2.7 s, we find the distance covered: