The two forces of gravity are equal
Explanation:
We can answer this question by applying Newton's third law of motion, which states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In this problem, we can identify the Sun as object A and the Earth as object B. This means that the force of gravity exerted by the Sun on the Earth is the action, while the force of gravity exerted by the Earth on the Sun is the reaction: according to Newton's third law, these two forces are equal and opposite.
Therefore, the two forces of gravity are equal in magnitude, which is given by:

where
G is the gravitational constant
M is the mass of the Sun
m is the mass of the Earth
r is the separation between the Earth and the Sun
Learn more about Newton's third law:
brainly.com/question/11411375
#LearnwithBrainly
Explanation:
'What is the magnitude of the force needed to stop the horses and bring the box into equilibrium?' ≈42N; according to the vectors rules.
'Where would you locate the rope to apply the force?' - in point D.
PS. zoom out the attached picture.
There is a gel (agarose) that is placed in abuffer-filled box and an electrical
field is applied via a power supply. The negative terminal
is at the far end (black wire), this causes DNA migrates toward the anode (red
wire).
Kind of radiation including visible light, radio waves, gamma rays, and X-rays, in which electric and magnetic fields vary simultaneously. So, A.