<span>They are balanced. If the forces were not balanced the book would move*. In this example, the downward force of gravity on the book is counterbalanced by the upthrust of the desk. </span>
It's average speed during that 26 seconds was about 4.77 m/s. Without seeing the graph, we can't tell if it was going faster or slower at any particular time during that period. All we can tell is its average for the full interval.
Answer:
<h2>154.73N</h2>
Explanation:
The question is incomplete. Here is the complete question.
Using the strap at an angle of 31° above the horizontal, a Grade 12 Physics student, tired from studying, is dragging his 15 kg school bag across the floor at a constant velocity. (a) If the force of tension in the strap is 51 N, what is the normal force.
Check the diagram related to the question in the attachment below for better understanding.
The normal force is the reaction acting perpendicular to the force of tension in the strap and opposite the weight of the bag. They are the forces acting along the vertical.
The normal force N will be the sum of the force of tension acting along the vertical (Ty) and the weight of the bag (W).
Ty = 15sin31°
Ty = 7.73N
W = mass * acceleration due to gravity
W = 15.0*9.8
W = 147N
The normal force is therefore expressed as;
N = Ty + W
N = 7.73 + 147
N = 154.73N
Responder:
A) ω = 565.56 rad / seg
B) f = 90Hz
C) 0.011111s
Explicación:
Dado que:
Velocidad = 5400 rpm (revolución por minuto)
La velocidad angular (ω) = 2πf
Donde f = frecuencia
ω = 5400 rev / minuto
1 minuto = 60 segundos
2πrad = I revolución
Por lo tanto,
ω = 5400 * (rev / min) * (1 min / 60s) * (2πrad / 1 rev)
ω = (5400 * 2πrad) / 60 s
ω = 10800πrad / 60 s
ω = 180πrad / seg
ω = 565.56 rad / seg
SI)
Dado que :
ω = 2πf
donde f = frecuencia, ω = velocidad angular en rad / s
f = ω / 2π
f = 565.56 / 2π
f = 90.011669
f = 90 Hz
C) Periodo (T)
Recordar T = 1 / f
Por lo tanto,
T = 1/90
T = 0.0111111s
Answer:
Both are aquatic animals and are hunters
Explanation: