1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FinnZ [79.3K]
3 years ago
15

Learning Goal: To understand the distinction between mass and weight and to be able to calculate the weight of an object from it

s mass and Newton's law of gravitation. The concepts of mass and weight are often confused. In fact, in everyday conversations, the word "weight" often replaces "mass," as in "My weight is seventy-five kilograms" or "I need to lose some weight." Of course, mass and weight are related; however, they are also very different. Mass, as you recall, is a measure of an object's inertia (ability to resist acceleration). Newton's 2nd law demonstrates the relationship among an object's mass, its acceleration, and the net force acting on it: F?net=ma?. Mass is an intrinsic property of an object and is independent of the object's location. Weight, in contrast, is defined as the force due to gravity acting on the object. That force depends on the strength of the gravitational field of the planet: W?=mg?, where W? is the weight of an object, m is the mass of that object, and g? is the local acceleration due to gravity (in other words, the strength of the gravitational field at the location of the object). Weight, unlike mass, is not an intrinsic property of the object; it is determined by both the object and its location. Which of the following quantities would be acceptable representations of weight? Check all that apply. A.) 12.0 lb B.) 0.34 g C.) 120 kg D.) 1600 kN E.) 0.34 m F.) 411 cm
Physics
1 answer:
Nimfa-mama [501]3 years ago
4 0

Answer:

The true statements are: A, D

Explanation:

This interesting problem of the conceptual relationship between mass and weight, the equation for weight is

        W = m g

From Newton's second law

       W = ma

Where g the acceleration of gravity, this acceleration can vary at several points, for example, in a vertical circumference the acceleration of gravity is always down and the centripetal acceleration continuously changes direction therefore the body weight constantly changes from zero to the maximum value.

The mass instead is always the same and is the resistance (inertia) to the movement of the bodies

Of the aforementioned the peo has the unit mass multiplied by the acceleration

           

        Weight [N] = mass [kg] acceleration [m / s2]

        Weight [lb] = mass [slug] acceleration [ft / s2]

Examine the statements

A) 12.0 lb. True pounds are the mass for acceleration. English measurement system

B) 0.34g False. Grams are units of mass,

C) 120 kg. False. The kilograms is a multiple of the grams, which are units of mass

D) 1600 kN True the newton is the unit of weight, the Newton kilo is a multiple

E) 0.34 m False meters are units of length

F) 411 cm False centimeters is a submultiple of the meter that is a unit of length

The true statements are: A, D

You might be interested in
If a transmission line in a cold climate collects ice, the increased diameter tends to cause vortex formation in a passing wind.
AleksAgata [21]

Answer:

a) f_1=5.587Hz

b) f_{n+1}-f_n=5.587Hz

Explanation:

The frequency of the n^{th} harmonic of a vibrating string of length <em>L, </em>linear density \mu under a tension <em>T</em> is given by the formula:

f_n=\frac{n}{2L} \sqrt{\frac{T}{\mu}

a) So for the <em>fundamental mode</em> (n=1) we have, substituting our values:

f_1=\frac{1}{2(347m)} \sqrt{\frac{65.4\times10^6N}{4.35kg/m}}=5.587Hz

b) The <em>frequency difference</em> between successive modes is the fundamental frequency, since:

f_{n+1}-f_n=\frac{n+1}{2L} \sqrt{\frac{T}{\mu}}-\frac{n}{2L} \sqrt{\frac{T}{\mu}}=(n+1-n)\frac{1}{2L} \sqrt{\frac{T}{\mu}}=\frac{n}{2L} \sqrt{\frac{T}{\mu}}=f_1=5.587Hz

3 0
3 years ago
How is frequency related to the sound we hear?
Leviafan [203]
Frequency is the vibration of noise and the vibration determines the pitch, which we depend on to be a pitch or frequency we can hear. If it's too high or too low our ears can't hear it 
8 0
4 years ago
What is a homopolar motor?????)
PSYCHO15rus [73]

Answer:

A homopolar motor is a direct current electric motor with two magnetic poles, the conductors of which always cut unidirectional lines of magnetic flux by rotating a conductor around a fixed axis so that the conductor is at right angles to a static magnetic field.

Explanation:

7 0
3 years ago
Read 2 more answers
Please help I’ll give brainliest
lara [203]
I think the answer is B
6 0
3 years ago
A student observes that it is hard to hear music underwater in a pool. They state that the sound is always muffled. They
s344n2d4d5 [400]

Answer:

FALSE      

Explanation:

The answer is false.

The speed of the sound in water is  faster when compared to the speed of sound in air. This is because, the particles in air is loosely packed and are far from each other as compared to water or liquid.

The water particles are close to each other than air particles, so water particles are able to transmit the vibrations of the sound faster than the air particles.

Therefore sound waves travels faster in water than in air.

5 0
3 years ago
Other questions:
  • What is the most commonly used method of food preservation today? refrigeration drying foods smoking raw meats salt curing
    15·2 answers
  • What is the electric force between a glass ball that has +2.5 x 10^-6 C of charge and a rubber ball that has -5.0 x 10^-6 C of c
    10·1 answer
  • As a car skids to a stop, friction transforms kinetic energy to
    14·1 answer
  • When discussing Newton’s laws of motion, which terms do people most likely use when talking about Newton’s third law of motion?
    11·2 answers
  • How big is the universe I get it only God knows because he created all of it meaning everything.That is real.
    7·1 answer
  • How can DNA be used to tell if two species are related?
    6·1 answer
  • M= 1000 g g= 10 m/s2 h= 10 K.E at GROUND = 400 j M.E = ....... ........J the answer is 400 so plz explain how
    10·1 answer
  • Someone help me pls
    11·2 answers
  • g In a certain underdamped RLC circuit, the voltage across the capacitor decreases in one cycle from 5.0 V to 3.8 V. The period
    12·1 answer
  • Which electromagnetic waves have the shortest wavelength and the highest frequency?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!