It is true that the light is 15.000 more dangerous than the radiation of a microwave.
<h3>What is the wavelength?</h3>
The wavelength shows the extent or how far the wave travels. Now we know that the energy of the wave can be use to find out how much dangerous the wave is.
Now;
1.6 * 10^-19 J = 1eV
x J = 1.8 eV
x = 1.8 eV * 1.6 * 10^-19 J /1eV
x = 2.88 * 10^-19 J
Now if the energy of the microwaves is 1.2 x 10^-4 J, then it follows that;
2.88 * 10^-19 J/ 1.2 x 10^-4 J,
= 2.4 * 10^15
Hence, it is true that the light is 15.000 more dangerous than the radiation of a microwave.
Learn more about microwave:brainly.com/question/15708046
#SPJ1
Answer:
Below
Explanation:
● What makes conductors special is that they have some free electrons that can move.
● An insulator has no free electrons wich explains why current isn't transmitted through it.
C. The daughters received a random set of genes from both of their parents
Answer:
t = 1,144 s
Explanation:
The simple pendulum consists of an inextensible string with a mass at the tip, the angular velocity of this is
w = √( L / g)
The angular velocity is related to the frequency and period
w = 2π f
f = 1 / T
w = 2π / T
Let's replace
2π / T = √ (L / g)
T = 2π √ (g / L)
Let's calculate
T = 2π √ (9.81 / 18.5)
T = 4,576 s
The definition of period in the time it takes the ball to come and go to a given point (a revolution) in our case we go from the end to the middle point that is a quarter of the path
t = T / 4
t = 4,576 / 4
t = 1,144 s
Answer:
(a) 5.04 eV (B) 248.14 nm (c) 
Explanation:
We have given Wavelength of the light \lambda = 240 nm
According to plank's rule ,energy of light


Maximum KE of emitted electron i= 0.17 eV
Part( A) Using Einstien's equation
, here
is work function.
= 5.21 eV-0.17 eV = 5.04 eV
Part( B) We have to find cutoff wavelength



Part (C) In this part we have to find the cutoff frequency
