Knowing the direction of a force is important because it helps someone know the motion of the object. if you use a free body diagram, then it becomes easy to see all the forces being applied to an object. if there is more force going one way, the object is accelerating in that direction. if all the forces cancel each other out, then the object is at a constant speed or is at rest.
The final magnification will be 400-fold or 400 times the original size of the object.
For magnifying smaller objects, a compound microscope is used.
A compound microscope consists of an objective and an eyepiece, whose diagram is shown in the adjoining image.
The lens near the object is called an objective and the other one is the eyepiece.
Let the magnification of the objective be m1
Let the magnification of the eyepiece be m2
The final magnification by the microscope, M, will be
M = m1 x m2
Putting the values in the above equation
M = 40 x 10
M= 400
Thus, the final magnification will be 400-fold or 400 times the original size of the object.
To know more about "optical instruments", refer to the link given below:
brainly.com/question/13276240?referrer=searchResults\
#SPJ4
Answer:
1.65
Explanation:
The equation of the forces along the horizontal direction is:
(1)
where
F = 65 N is the force applied with the push
is the frictional force
m = 4 kg is the mass
is the acceleration
The force of friction can be written as
(2), where
is the coefficient of kinetic friction
R is the normal force exerted by the floor
The equation of forces along the vertical direction is
(3)
since the bookcase is in equilibrium. Substituting (2) and (3) into (1), we find

And solving for
,

1) science does not accept personal story's as evidence, pseudoscience relies on these story's as evidence.
2) science argues from scientific knowledge, pseudoscience argues from ignorance
3) science progresses, pseudoscience does not progress
and 4) (just in case) science holds pier review, pseudoscience does not
Answer:
F = 1480.77N
Explanation:
In order to calculate the required force to push the container with a constant velocity, you take into account the the sum of force on the container is equal to zero. Furthermore, you have for an incline the following sum of forces:
(1)
F: required force = ?
W: weight of the container = 1800N
N: normal force = weigth
α: angle of the incline = 28°
g: gravitational acceleration = 9.8m/s^2
μ: coefficient of friction = 0.4
You solve the equation (1) for F and replace the values of the other parameters:

The required force to push the container for the incline with a constant velocity is 1480.77N