Answer:
500 J
Explanation:
In the case of a rectilinear movement, the work is calculated as the product of Force (N) * movement (m). In your case, unless the angle between the force vector and the displacement vector is different from 0, the work is:
25 N * 20 m = 500 J
The ship floats in water due to the buoyancy Fb that is given by the equation:
Fb=ρgV, where ρ is the density of the liquid, g=9.81 m/s² is the acceleration of the force of gravity and V is volume of the displaced liquid.
The density of fresh water is ρ₁=1000 kg/m³.
The density of salt water is in average ρ₂=1025 kg/m³.
To compare the volumes of liquids that are displaced by the ship we can take the ratio of buoyancy of salt water Fb₂ and the buoyancy of fresh water Fb₁.
The gravity force of the ship Fg=mg, where m is the mass of the ship and g=9.81 m/s², is equal to the force of buoyancy Fb₁ and Fb₂ because the mass of the ship doesn't change:
Fg=Fb₁ and Fg=Fb₂. This means Fb₁=Fb₂.
Now we can write:
Fb₂/Fb₁=(ρ₂gV₂)/(ρ₁gV₁), since Fb₁=Fb₂, they cancel out:
1/1=1=(ρ₂gV₂)/(ρ₁gV₁), g also cancels out:
(ρ₂V₂)/(ρ₁V₁)=1, now we can input ρ₁=1000 kg/m³ and ρ₂=1025 kg/m³
(1025V₂)/(1000V₁)=1
1.025(V₂/V₁)=1
V₂/V₁=1/1.025=0.9756, we multiply by V₁
V₂=0.9756V₁
Volume of salt water V₂ displaced by the ship is smaller than the volume of sweet water V₁ because the force of buoyancy of salt water is greater than the force of fresh water because salt water is more dense than fresh water.

1. According to person standing on ground ~
2. According to The car ~
- The person is not in motion
3. According to the Seat ~
- The person is not in motion
4. According to another person on ride ~
- The person is not in motion
5. According to the track ~
6. According to the Sun ~
I hope that's what you were looking for, goodluck for your assignment ~
Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping