Answer:
The amount of kilograms of ice at -20.0°C that must be dropped into the water to make the final temperature of the system 40.0°C = 0.0674 kg
Explanation:
Heat gained by ice in taking the total temperature to 40°C = Heat lost by the water
Total Heat gained by ice = Heat used by ice to move from -20°C to 0°C + Heat used to melt at 0°C + Heat used to reach 40°C from 0°C
To do this, we require the specific heat capacity of ice, latent heat of ice and the specific heat capacity of water. All will be obtained from literature.
Specific heat capacity of ice = Cᵢ = 2108 J/kg.°C
Latent heat of ice = L = 334000 J/kg
Specific heat capacity of water = C = 4186 J/kg.°C
Heat gained by ice in taking the total temperature to 40°C = mCᵢ ΔT + mL + mC ΔT = m(2108)(0 - (-20)) + m(334000) + m(4186)(40 - 0) = 42160m + 334000m + 167440m = 543600 m
Heat lost by water = mC ΔT = 0.25 (4186)(75 - 40) = 36627.5 J
543600 m = 36627.5
m = 0.0674 kg = 67.4 g of ice.
Reflection from such a rough surface is called diffuse reflection and appears matte
Answer:
C) is zero
Explanation:
According to the law of energy conservation, the total mechanical energy of the object is conserved. A book falling a distance d would have a change in potential energy, resulting in the same change in kinetic energy. But the total mechanical energy must be the same. So there's 0 change in total energy of the system.
Answer:
The parasympathetic division increases digestive activity and the sympathetic division decreases it. The Sympathetic Division of the ANS is responsible for mobilizing the body in response to situations that are threatening or otherwise exciting.
Explanation:
Have a great rest of your day
#TheWizzer