CH3NH2 + HOH ==> CH3NH3^+ + OH^-Which molecule/ion accepts a proton. That is the base. Which molecule/ion donates a proton. That is the acid.
A stable subatomic particle known by the symbol for "proton"
e elementary charge, p, H+, or 1H+ having a positive electric charge. Its mass is 1,836 times greater than an electron's mass and just a little bit less than that of a neutron (the proton–electron mass ratio). "Nucleons" refers to protons and neutrons together, each of which has a mass of roughly one atomic mass unit (particles present in atomic nuclei).
Each atom. has a nucleus. that contains one or more protons. In order to keep the atomic electrons bound, they offer the central attractive electrostatic force. An element's defining characteristic, known as the atomic number, is the number of protons in the nucleus (represented by the symbol Z)
Learn more about proton here:
brainly.com/question/1252435
#SPJ4
I would think it is a heterogeneous mixture since it can't be an element since there are more than one type of atom, it can't be a compound since the leaves are not bonded together, and it can not be a homogeneous mixture since the leaves don't all blended together (the pile is not uniform) and you can distinguish all the different parts of the mixture. It can be considered a heterogeneous mixture since the leaves are mixed together (along with other things like dirt) in a non-uniform way so that you can point out the parts of the mixture and it does not look like one thing.
I hope this helps. Let me know in the comments if anything is unclear.
In order to synthesize a complex organic molecule, the
chemist should at least illustrate or imagine the bonds that are in need to be
cut down or to separate in order to obtain the compound that can be easily
changed.
Moles = n/v where n is the moles of solute and v being the liters of solution.
We can put in the information provided to find the molarity.
Moles = .45/3.0 = .15
So we now know that the molarity of that solution is .15!
I hope I helped you :). Make sure to memorize that formula because it's not that hard as long as you know what to plug in.