Explanation:
(a) The net force in the y direction is the sum of the individual forces. Taking up to be +y:
∑F = Lift − Weight
∑F = 100,000 N − 75,000 N
∑F = 25,000 N
(b) Since the net force is not 0, the forces are unbalanced.
(c) Since the lift is greater than the weight, the plane will rise.
(d) The net force in the x direction is the sum of the individual forces. Taking forward to be +x:
∑F = Thrust − Drag
∑F = 200,000 N − 23,000 N
∑F = 177,000 N
(e) Since the net force is not 0, the forces are unbalanced.
(f) Since the thrust is greater than the drag, the plane will accelerate.
Convection, conduction, and radiation.
Answer:
Elastic potential energy, 
Explanation:
Charge, 
Potential, V = 50 V
It is required to find the electric potential energy in a capacitor stored in it. The formula of the electric potential energy in a capacitor is given by :

So, the electric potential energy stored in the capacitor is 
Answer:
Cell Death
Explanation:
Cell death is defined as the biological process which ceases the function of the cell to carry out. This can be caused due to the formation of new cells in place of old cells.
Or it can be cause due to some serious disease or may be caused due to the injury or due to the death of that organism to which these cells belong.
And another case is that when X-ray photon interact with the human cell while it passes through the cell, it will damage the cell and cease it to function well and a more drastic condition occurs and that cell become dead.
Answer:
4.5 s, 324 ft
Explanation:
The object is projected upward with an initial velocity of

The equation that describes its height at time t is
(1)
where t, the time, is measured in seconds.
In order to find the time it takes for the object to reach the maximum height, we must find an expression for its velocity at time t, which can be found by calculating the derivative of the position, s(t):
(2)
At the maximum heigth, the vertical velocity is zero:
v(t) = 0
Substituting into the equation above, we find the corresponding time at which the object reaches the maximum height:

And by substituting this value into eq.(1), we also find the maximum height:
