Answer:3.87*10^-4
Explanation:
What is the decrease in mass, delta mass Xe , of the xenon nucleus as a result of this deca
We have been given the wavelength of the gamma ray, find the frequency using c = freq*wavelength.
C=f*lambda
3*10^8=f*3.44*10^-12
F=0.87*10^20 hz
Then with the frequency, find the energy emitted using equation
E=hf E = freq*Plank's constant
E=.87*10^20*6.62*10^-34
E=575.94*10^(-16)
With this energy, convert into MeV from joules.
With the energy in MeV, use E=mc^2 using c^2 = 931.5 MeV/u.
Plugging and computing all necessary numbers gives you
3.87*10^-4 u.
Answer:
a. chemical contamination of streams ans rivers
d. adaptation
Answer:
B.
Explanation:
I'm pretty sure the answer is B because animals at the top need a lot of energy, so to make up for loss of energy at the higher levels, those organisms at the top have to consume a lot more.
Answer:
The molecules are continually colliding with each other and with the walls of the container. When a molecule collides with the wall, they exert small force on the wall The pressure exerted by the gas is due to the sum of all these collision forces. The more particles that hit the walls, the higher the pressure.
Answer:
The initial and final temperatures of the gas is 300 K and 600 K.
Explanation:
Given that,
Entropy of the gas = 14.41 J/K
Absorb gas = 6236 J
We know that,

At constant pressure,



Put the value into the formula




...(I)
We need to calculate the initial and final temperatures of the gas
Using formula of energy

Put the value into the formula




Put the value of T₂


Put the value of T₁ in equation (I)


Hence, The initial and final temperatures of the gas is 300 K and 600 K.