cot(<em>θ</em>) = cos(<em>θ</em>)/sin(<em>θ</em>)
So if both cot(<em>θ</em>) and cos(<em>θ</em>) are negative, that means sin(<em>θ</em>) must be positive.
Recall that
cot²(<em>θ</em>) + 1 = csc²(<em>θ</em>) = 1/sin²(<em>θ</em>)
so that
sin²(<em>θ</em>) = 1/(cot²(<em>θ</em>) + 1)
sin(<em>θ</em>) = 1 / √(cot²(<em>θ</em>) + 1)
Plug in cot(<em>θ</em>) = -2 and solve for sin(<em>θ</em>) :
sin(<em>θ</em>) = 1 / √((-2)² + 1)
sin(<em>θ</em>) = 1/√(5)
One form of the relation of inverse variation is y = k/x.
first step: Find the value of k: Taking the values x=5 and y = 4, 4=k/5, or k=20. Then, y = 20/x.
Next: Let y = 7 and find the corresp. value of x: 7=20/x, or 7x=20, or
x = 20/7 (answer)
Answer:
x = - 1 ± 2i
Step-by-step explanation:
we can use the discriminant b² - 4ac to determine the nature of the roots
• If b² - 4ac > , roots are real and distinct
• If b² - 4ac = 0, roots are real and equal
• If b² - ac < 0, roots are not real
for x² + 2x + 5 = 0
with a = 1, b = 2 and c = 5, then
b² - 4ac = 2² - (4 × 1 × 5 ) = 4 - 20 = - 16
since b² - 4ac < 0 there are 2 complex roots
using the quadratic formula to calculate the roots
x = ( - 2 ±
) / 2
= (- 2 ± 4i ) / 2 = - 1 ± 2i
23.4 ft2
Step-by-step explanation:
jvuctctctcrxrxrxrxrxr
This would be the identity property of addition telling us that any number added to zero is that number (i.e. 6 added to zero is still 6)