Impulse = change in momentum
The answer is 0.
Answer:
the observed frequency will reduce but the wavelength will increase
Explanation:
As we know
fo = fs (v/(v-vs))
fo = observed frequency
vs = velocity of source
As per this equation,
When an observer moves away from the stationary source, the observed frequency reduces. Since the observer in the balloon is moving away from the source which itself is moving in opposite direction, the observed frequency will reduce.
Since wavelength = V/fs . The source frequency is unchanged but the velocity is increasing as it is moving in downward direction. Hence, the wavelength will increase
Answer:
Explanation:
Electric field due to a charge Q at a point d distance away is given by the expression
E = k Q / d , k is a constant equal to 9 x 10⁹
Field due to charge = 3 X 10⁻⁹ C
E = E = 
Field due to charge = 4 X 10⁻⁹ C
![E = [tex]\frac{9\times 10^9\times4\times10^{-9}}{(2-d)^2}](https://tex.z-dn.net/?f=E%20%3D%20%5Btex%5D%5Cfrac%7B9%5Ctimes%2010%5E9%5Ctimes4%5Ctimes10%5E%7B-9%7D%7D%7B%282-d%29%5E2%7D)
These two fields will be equal and opposite to make net field zero
=
[/tex]


d = 0.928
Answer:
5.01 J
Explanation:
Info given:
mass (m) = 0.0780kg
height (h) = 5.36m
velocity (v) = 4.84 m/s
gravity (g) = 9.81m/s^2
1. First, solve for Kinetic energy (KE)
KE = 1/2mv^2
1/2(0.0780kg)(4.84m/s)^2 = 0.91 J
so KE = 0.91 J
2. Next, solve for Potential energy (PE)
PE = mgh
(0.0780kg)(9.81m/s^2)(5.36m) = 4.10 J
so PE = 4.10 J
3. Mechanical Energy , E = KE + PE
Plug in values for KE and PE
KE + PE = 0.91J + 4.10 J = 5.01 J
Answer:
a) θ₁ = 23.14 °
, b) θ₂ = 51.81 °
Explanation:
An address network is described by the expression
d sin θ = m λ
Where is the distance between lines, λ is the wavelength and m is the order of the spectrum
The distance between one lines, we can find used a rule of proportions
d = 1/600
d = 1.67 10⁻³ mm
d = 1-67 10⁻³ m
Let's calculate the angle
sin θ = m λ / d
θ = sin⁻¹ (m λ / d)
First order
θ₁ = sin⁻¹ (1 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₁ = sin⁻¹ (3.93 10⁻¹)
θ₁ = 23.14 °
Second order
θ₂ = sin⁻¹ (2 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₂ = sin⁻¹ (0.786)
θ₂ = 51.81 °