Answer: a) 127 eV; b) there is no change of kinetic energy.
Explanation: In order to explain this problem we have to use the change of potentail energy ( conservative field) is equal to changes in kinetic energy. So for the proton ther move to lower potential then they gain kinetic energy from the electric field. This means the electric force do work in this trayectory and then the protons increased changes its speed.
If we replace the proton by a electron we have a very different situaction, the electrons are located in a lower potental then they can not move to higher potential if any external force does work on the system.
In resumem, the electrons do not move from a point with V=87 to other point with V=-40 V. The electric force point to high potential so the electrons can not move to lower potential region (V=-40V).
Answer:
A permanent magnet creates a magnetic field at all points in the surrounding region.
An electric current in a conductor creates a magnetic field at all points in the surrounding region.
A moving electric charge creates a magnetic field at all points in the surrounding region.
Explanation:
Magnet field is a region around the magnet in which the magnetic force can be experienced. A magnet has two poles: North pole and South pole. A Magnetic field originates from north pole and ends at south pole.
Magnets are of two types: Permanent magnet and temporary magnet.
A moving charge produces magnetic field. A stationary charge can not produce a magnetic field.
The rate of flowing charge constitutes an electric current. If the cardboard is placed around the current carrying conductor and the iron fillings spread around the cardboard then the iron nails get stick to it. It means that a current carrying conductor creates a magnetic field around it.
Therefore, the true statements from the given statements are as follows;
A permanent magnet creates a magnetic field at all points in the surrounding region.
An electric current in a conductor creates a magnetic field at all points in the surrounding region.
A moving electric charge creates a magnetic field at all points in the surrounding region.
Answer: The molar heat capacity of aluminum is 
Explanation:
As we know that,
.................(1)
where,
q = heat absorbed or released
= mass of water = 130.0 g
= mass of aluminiunm = 23.5 g
= final temperature
=
= temperature of water =
= temperature of aluminium =
= specific heat of water= 
= specific heat of aluminium= ?
Now put all the given values in equation (1), we get
Molar mass of Aluminium = 27 g/mol
Thus molar heat capacity =
There are two general types of collisions, inelastic and elastic.
Inelastic collisions occur when two objects collide but neither of them bounce away from each other.
Collisions in which the objects do not touch each other are elastic. (Ex: Rutherford Scattering)
It is callled do it your self you you you