<h3>
1.</h3>
C) The volume of the gas is proportional to the number of moles of gas particles.
The Avogadro's law applies to ideal gases with constant pressure and temperature. By that law, the volume of an ideal gas is proportional to the number of moles of particles in that gas.
<h3>2.</h3>
B) The gas now occupies less volume, and the piston will move downward.
Boyle's Law applies to ideal gases with a constant temperature. The volume of an ideal gas is inversely related to its pressure. A high pressure drives gas particles together, such that they occupy less volume. The gas trapped inside the piston has a smaller volume. As a result, the the piston will move downward.
Alternatively, consider the forces acting on the piston. Both the atmosphere and gravity are dragging the piston down. In order for it to stay in place, the gas below it must exert a pressure to balance the two forces. Now the pressure from outside has increased. The gas inside needs to increase its pressure. It needs a smaller volume to create that extra pressure. As a result, its volume will decrease, and the piston will move downwards.
Encounter between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into other forms such as heat, noise, or potential energy.
Answer:
2 mol of CO₂
Solution:
The reaction is as follow,
H₂CO + O₂ → CO₂ + H₂O
According to this equation,
1 mole of H₂CO produces = 1 mole of CO₂
So,
2 moles of H₂CO will produce = X moles of CO₂
Solving for X,
X = (2 mol × 1 mol) ÷ 1 mol
X = 2 mol of CO₂
The question is incomplete. The complete question is:
At 25◦C and atmospheric pressure the volume change of mixing of binary liquid mixtures of species 1 and 2 is given by the equation:
ΔV = x1x2(45x1 + 25x2)
Where ΔV is in cm3-mol-1. At these conditions, the molar volumes of pure liquid 1 and 2 are V1= 110 and V2= 90 cm3-mol-1. Determine the partial molar volumes 1VE and 2VE in a mixture containing 40 mole percent of specie 1.
Answer:
1VE = 117.92 cm³.mol⁻¹, 2VE = 97.92 cm³.mol⁻¹
Explanation:
In the equation given, x represents the molar fraction of each substance, thus x1 = 0.4 and x2 = 0.6. Because of the mixture, the molar partial volume of each substance will change by a same amount, which will be:
ΔV = 0.4*0.6(45*0.4+ 25*0.6)
ΔV = 7.92 cm³.mol⁻¹
1VE - V1 = 7.92
1VE = 7.92 + 110
1VE = 117.92 cm³.mol⁻¹
2VE - V2 = 7.92
2VE = 7.92 + 90
2VE = 97.92 cm³.mol⁻¹