I believe the answer is a because 2 times 12 is 24. Hope this helped
Answer: Boron is the element which has properties of both metals and nonmetals.
Explanation:
Metals are defined as the elements which loose electrons to attain stable electronic configuration. They attain positive charge and form cation. Example: Zinc (Zn), Aluminium (Al) , copper (Cu)
Non-metals are defined as the elements which gain electrons to attain stable electronic configuration. They attain negative charge and form anion. Example: Chlorine (Cl) , Sulphur (S)
Metalloids are defined as the elements which show properties of both metals and non-metals. There are 7 metalloids in the periodic table. They are Boron (B) , Silicon (Si) , Germanium (Ge) , Arsenic (As) , Antimony (Sb), Tellurium (Te) and Polonium (Po).
Thus boron is the element which has properties of both metals and nonmetals.
Answer:
For the first question, to determine the total number of molecules of nitrogen dioxide, first make use of the molar mass of the nonpolar compound and then use that to find the total number of moles and then subsequently after make use of the ratio for the Avogadro's number to determine the total number of molecules of this compound.
For the final question, do the inverse, where we make use of the molecules of the compound and then use Avogadro's number to determine the moles of the compound and then use the same molar mass of the compound to determine the grams of the Nitrogen Dioxide.
Answer:
The answer is 2.660 mol/l
Explanation:
Given: n= 0.0665, v= 25.00ml
Required: C
C (molarity)= n (of solute)/ v (of solvent) [ standard unit: mol/l]
First convert volume of solvent in its standard unit, i.e. litres(L)
v= 25.00ml/1000= 0.02500L
C = 0.0665 mol / 0.02500 L= 2.660 mL (In proper significant digits i.e. 4 sigdigs)
Therefore, The molarity of the sulfuric acid is 2.660 mol/L :)
Answer:
14700J
Explanation:
From the question given, the following were obtained:
M = 100g
ΔT = 35° C
C = 4.2J/g °C
Q=?
The heat transferred can calculated for by using the following equation
Q = MCΔT
Q = 100 x 4.2 x 35
Q= 14700J