<u>Answer:</u>
0.24 m
<u>Explanation:</u>
Given:
Wave velocity ( v ) = 360 m / sec
Frequency ( f ) = 1500 Hz
We have to calculate wavelength ( λ ):
We know:
v = λ / t [ f = 1 / t ]
v = λ f
= > λ = v / f
Putting values here we get:
= > λ = 360 / 1500 m
= > λ = 36 / 150 m
= > λ = 0.24 m
Hence, wavelength of sound is 0.24 m.
Answer:
400m
Explanation:
Brainliest? :))
Let your initial displacement from your home to the store be
Dd
>
1 and your displacement from the store to your friend’s house
be Dd
>
2.
Given: Dd
>
1 = 200 m [N]; Dd
>
2 = 600 m [S]
Required: Dd
>
T
Analysis: Dd
>
T 5 Dd
>
1 1 Dd
>
2
Solution: Figure 6 shows the given vectors, with the tip of Dd
>
1
joined to the tail of Dd
>
2. The resultant vector Dd
>
T is drawn in red,
from the tail of Dd
>
1 to the tip of Dd
>
2. The direction of Dd
>
T is [S].
Dd
>
T measures 4 cm in length in Figure 6, so using the scale of
1 cm : 100 m, the actual magnitude of Dd
>
T is 400 m.
Statement: Relative to your starting point at your home, your
total displacement is 400 m [S].
Electric force depends on the charge and the strength of the electric field. The equation that relates the three:
F = Eq where q is the charge and E is the electric field strength.
Explanation:
Momentum before = momentum after
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
(65 kg) (0 m/s) + m (0 m/s) = (65 kg) (-3.5 m/s) + m (4 m/s)
m ≈ 57 kg
Answer:
25
Explanation:
Given:
1 can of concentrate requires 3 cans of water
Now,
Total ounces in 200 6-ounce cans = 1200 ounces
also,
for 1 can of concentrate requires 3 cans of water
thus,
for 12 ounces can water can required = 3 × 12 ounces = 36 ounces of cans
Thus,
total ounce of juice per can = 12 + 36 = 48 ounces per can
therefore,
the number of 12-ounce cans required are = 
or
= 
or
the number of 12-ounce cans required are = 25