Gravitational potential energy can be described as m*g*h (mass times gravity times height).
Originally,
15kg * 9.8m/s^2 *0.3 m = 44.1 kg*m^2/s^2 = 44.1 Joules.
After it is moved to a 1m shelf:
15kg * 9.8m/s * 1 = 147 kg*m^2/s^2= 147 Joules.
To find how much energy was added, we subtract final energy from initial energy:
147 J - 44.1 J = 102.9 Joules.
Answer:
it loaded and it is C. buddy sorry about that :)
Answer:
Theta1 = 12° and theta2 = 168°
The solution procedure can be found in the attachment below.
Explanation:
The Range is the horizontal distance traveled by a projectile. This diatance is given mathematically by Vo cos(theta) t. Where t is the total time of flight of the projectile in air. It is the time taken for the projectile to go from starting point to finish point. This solution assumes the projectile finishes uts motion on the same horizontal level as the starting point and as a result the vertical displacement is zero (no change in height).
In the solution as can be found below, the expression to calculate the range for any launch angle theta was first derived and then the required angles calculated from the equation by substituting the values of the the given quantities.
Explanation:
If the stones are unloaded from the boat, the weight of the boat will decrease. Therefore, the volume of the water displaced by the boat will also decrease. Due to this, the volume of the boat immersed in the water decreases. Hence, the level of the water around the boat will decrease.
There is no <span>radioactive decay</span>