Answer:
The initial speed of the pelican is 8.81 m/s.
Explanation:
Given;
height of the pelican, h = 5.0 m
horizontal distance, X = 8.9 m
The time of flight is given by;

The initial horizontal speed of the pelican is given by;
X = vₓt
vₓ = X / t
vₓ = 8.9 / 1.01
vₓ = 8.81 m/s
Therefore, the initial speed of the pelican is 8.81 m/s.
Answer:
70713
Explanation:
Because you need to multiply the amount of water lost (2430) by the time (29.1) which will equal 70713J/g needed to counter the loss.
Hope this helps:)
Answer:
Acceleration is 12m/s^2
Explanation:
We have a resultant force of 10N to the right and a resultant of 4N to the left, since the tow forces are acting in opposite directions, we subtract the two forces to find the net force. The net force would be 6N to the right.
We also know that F=ma, where F=force, m=mass, and a=acceleration
we can rearrange the equation like this,
a=F/m
now we can plug in the known variables
a=6N/0.5kg
a=12m/s^2
The question to the above information is;
What is the best use of an atomic model to explain the charge of the particles in Thomson's beams?
Answer;
An atom's smaller negative particles are at a distance from the central positive particles, so the negative particles are easier to remove.
Explanation;
-Atoms are comprised of a nucleus consisting of protons (red) and neutrons (blue). The number of orbiting electrons is the same as the number of protons and is termed the "atomic number" of the element.
J.J. Thomson discovered the electron. Atoms are neutral overall, therefore in Thomson’s ‘plum pudding model’:
- atoms are spheres of positive charge
- electrons are dotted around inside