Answer:
x = A sin ω t describes the displacement of the particle
v = A ω cos ω t
a = -A ω^2 sin ω t
a (max) = -A ω^2 is the max acceleration (- can be ignored here)
ω = (K/ m)^1/2 for SHM
F = - K x^2 restoring force of spring
K = 4.34 / .0745^2 = 782 N / m
ω = (782 / .297)^1/2 = 51.3 / sec
a (max) = .0745 * 782 / .297 = 196 m / s^2
Answer: I = 111.69 pA
Explanation: The hall effect is all about the fact that when a semiconductor is placed perpendicularly to a magnetic field, a voltage is generated which could be measured at right angle to the current path. This voltage is known as the hall voltage.
The hall voltage of a semiconductor sensor is given below as
V = I×B/qnd
Where V = hall voltage = 1.5mV =1.5/1000=0.0015V
I = current =?,
n= concentration of charge (electron density) = 5.8×10^20cm^-3 = 5.8×10^20/(100)³ = 5.8×10^14 m^-3
q = magnitude of an electronic charge=1.609×10^-19c
B = strength of magnetic field = 5T
d = thickness of sensor = 0.8mm = 0.0008m
By slotting in the parameters, we have that
0.0015 = I × 5/5.8×10^14 × 1.609×10^-19×0.0008
0.0015 = I×5/7.446×10^-8
I = (0.0015 × 7.446×10^-8)/5
I = 111.69*10^(-12)
I = 111.69 pA
Answer:
Explanation:
Given:
Force, f = 5 N
Velocity, v = 5 m/s
Power, p = energy/time
Energy = mass × acceleration × distance
Poer, p = force × velocity
= 5 × 5
= 25 W.
Note 1 watt = 0.00134 horsepower
But 25 watt,
0.00134 hp/1 watt × 25 watt
= 0.0335 hp.
Answer:
I found this don't know if its any use or not
Gravity is the energy due to Earth pulling down on an object.