Answer: Heat will transfer from the water to the air. When a mass of air moves on a warmer surface it is heated by its base. Then thermal instability develops in the lower layers and then extends upwards. If the air initially contained inversions, these are destroyed and a strong gradient is established uniformly in the lower troposphere temperature.
Answer:
8. 2.75·10^-4 s^-1
9. No, too much of the carbon-14 would have decayed for radiation to be detected.
Explanation:
8. The half-life of 42 minutes is 2520 seconds, so you have ...
1/2 = e^(-λt) = e^(-(2520 s)λ)
ln(1/2) = -(2520 s)λ
-ln(1/2)/(2520 s) = λ ≈ 2.75×10^-4 s^-1
___
9. Reference material on carbon-14 dating suggests the method is not useful for time periods greater than about 50,000 years. The half-life of C-14 is about 5730 years, so at 65 million years, about ...
6.5·10^7/5.73·10^3 ≈ 11344
half-lives will have passed. Whatever carbon 14 may have existed at the time will have decayed completely to nothing after that many half-lives.
Answer:
Speed = 300 m/s
Explanation:
Given the following data;
Frequency = 150 Hz
Wavelength = 2 meters
To find the speed of the wave;
Mathematically, the speed of a wave is given by the formula:
Substituting into the formula, we have;
Speed = 300 m/s
Answer:
D = 2.38 m
Explanation:
This exercise is a diffraction problem where we must be able to separate the license plate numbers, so we must use a criterion to know when two light sources are separated, let's use the Rayleigh criterion, according to this criterion two light sources are separated if The maximum diffraction of a point coincides with the first minimum of the second point, so we can use the diffraction equation for a slit
a sin θ = m λ
Where the first minimum occurs for m = 1, as in these experiments the angle is very small, we can approximate the sine to the angle
θ = λ / a
Also when we use a circular aperture instead of slits, we must use polar coordinates, which introduce a numerical constant
θ = 1.22 λ / D
Where D is the circular tightness
Let's apply this equation to our case
D = 1.22 λ / θ
To calculate the angles let's use trigonometry
tan θ = y / x
θ = tan⁻¹ y / x
θ = tan⁻¹ (4.30 10⁻² / 140 10³)
θ = tan⁻¹ (3.07 10⁻⁷)
θ = 3.07 10⁻⁷ rad
Let's calculate
D = 1.22 600 10⁻⁹ / 3.07 10⁻⁷
D = 2.38 m
Answer:
Maximum Tension=224N
Minimum tension= 64N
Explanation:
Given
mass =8 kg
constant speed = 6m/s .
g=10m/s^2
Maximum Tension= [(mv^2/ r) + (mg)]
Minimum tension= [(mv^2/ r) - (mg)]
Then substitute the values,
Maximum Tension= [8 × 6^2)/2 +(8×9.8)] = 224N
Minimum tension= [8 × 6^2)/2 -(8×9.8)]
=64N
Hence, Minimum tension and maximum Tension are =64N and 2224N respectively