<span>The gravitational pull of the sun and moon combined
create larger than normal tides.</span>
The wavelength of the third line in the Lyman series, and identify the type of EM radiation
In this series, the spectral lines are obtained when an electron makes a transition from any high energy level (n=2,3,4,5... ). The wavelength of light emitted in this series lies in the ultraviolet region of the electromagnetic spectrum.
1 / lambda = R(h)* (
-
)
= 109678 (
-
)
= 109678 (8/9)
Lambda = 9 / (109678 * 8 )
= 102.6 *
m = 102.6 nm
To learn more about Lyman series here
brainly.com/question/5762197
#SPJ4
The answer is C.energy because it can make light and heat
Answer:
32.76 Volt
Explanation:
frequency, f = 400 Hz
Area of crossection, A = 13 cm²
Maximum flux density, B = 0.9 tesla
Number of turns in secondary coil, N = 70
Let the maximum induced voltage is e.
According to the Faraday's law of electromagnetic induction, the induced emf is equal to the rate of change of magnetic flux.
e = dФ/dt

Time is defined as the reciprocal of frequency.
So, e = N B A f
e = 70 x 0.9 x 13 x 10^-4 x 400
e = 32.76 volt
Answer:
For vector u, x component = 10.558 and y component =12.808
unit vector = 0.636 i+ 0.7716 j
For vector v, x component = 23.6316 and y component = -6.464
unit vector = 0.9645 i-0.2638 j
Explanation:
Let the vector u has magnitude 16.6
u makes an angle of 50.5° from x axis
So 
Vertical component 
So vector u will be u = 10.558 i+12.808 j
Unit vector 
Now in second case let vector v has a magnitude of 24.5
Making an angle with -15.3° from x axis
So horizontal component 
Vertical component 
So vector v will be 23.6316 i - 6.464 j
Unit vector of v 