I believe the correct answer from the choices listed above is the second option. The scientific notation of the measurement 0.00000000062 kg would be <span>6.2 x 10^-10 kg. Scientific notation is used to express too large and too small values of numbers. Hope this helps. Have a nice day.</span>
Answer: velocity of the car is 113.33m/s
Explanation:
From Doppler effect,
in the case which the source is moving towards the observer at rest
f2 = v/(v-vs) *f1
where f2 is the final observed frequency
f1 is the initial observed frequency
v = 340m/s (speed of sound in air)
vs = velocity of the source of sound.
rearranging the above equation
f2*(v - vs) = f1* v
vs = (f1* v/f2) - v
but f1 = 80Hz
f2 = 60Hz
v = 340m/s
substituting,
vs = (80 x 340)/60 - 340
vs = 453.33 - 340
vs = 113.33m/s
velocity of the car is 113.33m/s
Answer:
a) Batteries and fuel cells are examples of galvanic cell
b) Ag-cathode and Zn-anode
c) Cell notation: Zn(s)|Zn²⁺(aq) || Ag⁺(aq)|Ag(s)
Explanation:
a) A galvanic cell is an electrochemical cell in which chemical energy is converted to electrical energy. The chemical reaction which drives a galvanic cell is a redox reaction i.e. a reduction-oxidation process.
A typical galvanic cell is composed of two electrodes immersed in a suitable electrolyte and connected via a salt bridge. One of the electrodes serves as a cathode where reduction or gain of electrons takes place. The other half cell functions as an anode where oxidation or loss of electrons occurs. Batteries and fuel cells are examples of galvanic cells.
b) The nature of the electrode that will serve as an anode or cathode depends on the value of the standard reduction potential (E⁰) of that electrode. The electrode with a higher or more positive the value of E⁰ serves as the cathode and the other will function as an anode.
In the given case, the E⁰ values from the standard reduction potential table are:
E⁰(Zn/Zn2+) = -0.763 V
E°(Ag/Ag+)=+0.799 V
Therefore, Ag will be the cathode and Zn will be the anode
c) In the standard cell notation, the anode half cell is written on the left followed by the salt bridge '||' and finally the cathode half cell to the right.
Zn(s)|Zn²⁺(aq) || Ag⁺(aq)|Ag(s)