Answer:
The third image
Explanation:
The one with the thumb pointing to the right
Answer:
A. The athlete isn’t doing any work because he doesn’t move the weight.
Explanation:
We must remember the definition of work, which says that work is equal to the product of mass by the distance displaced. In this case, the athlete only does work when he lifts the weight from the ground to the point where he holds the weight suspended.
So when he's holding the weight, he doesn't do any work.
Answer:
W = 0.842 J
Explanation:
To solve this exercise we can use the relationship between work and kinetic energy
W = ΔK
In this case the kinetic energy at point A is zero since the system is stopped
W = K_f (1)
now let's use conservation of energy
starting point. Highest point A
Em₀ = U = m g h
Final point. Lowest point B
Em_f = K = ½ m v²
energy is conserved
Em₀ = Em_f
mg h = K
to find the height let's use trigonometry
at point A
cos 35 = x / L
x = L cos 35
so at the height is
h = L - L cos 35
h = L (1-cos 35)
we substitute
K = m g L (1 -cos 35)
we substitute in equation 1
W = m g L (1 -cos 35)
let's calculate
W = 0.500 9.8 0.950 (1 - cos 35)
W = 0.842 J
Answer:
<u><em>A. wavelength</em></u>
Explanation:
The others are about sound and how high it is. That has nothing to do with time.