hi <3
i believe the answer would be D, as when the temperature increases the particles have more energy and can overcome the activation energy more rapidly.
hope this helps :)
Answer:
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Explanation:
We can answer this question by using Kepler's second law of planetary motion, which states that:
"A line connecting the center of the Sun with the center of each planet sweeps out equal areas in equal intervals of time"
This means that when a planet is further away from the Sun, it will move slower (because the line is longer, so it must move slower), while when the planet is closer to the Sun, it will move faster (because the line is shorter, so it must move faster).
In the text of this problem, it is written that the planet moves at 31 km/s when is close to the star and 35 km/s when it is farthest: this is in disagreement with what we said above, therefore the correct option is
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Impulse = change of momentum
Impulse = 45 x 6 = 270 Ns
The reason why there is no energy shortage nor will there ever be is because energy is being preserved and conserved and only changes form. It never gets lost or increased.
Answer:
The maximum safe depth in salt water is 3758.2 m.
Explanation:
Given that,
Diameter = 20 cm
Radius = 10 cm
Thickness = 9.0 cm
Force 
Inside pressure = 1.0 atm
We need to calculate the area
Using formula of area

Put the value into the formula


We need to calculate the pressure
Using formula of pressure

Put the value into the formula



We need to calculate the maximum depth
Using equation of pressure


Put the value into the formula


Hence, The maximum safe depth in salt water is 3758.2 m.