1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Digiron [165]
1 year ago
5

Find the wavelength of the third line in the lyman series, and identify the type of em radiation.

Physics
1 answer:
Natalija [7]1 year ago
8 0

The wavelength of the third line in the Lyman series, and identify the type of EM radiation

In this series, the spectral lines are obtained when an electron makes a transition from any high energy level (n=2,3,4,5... ). The wavelength of light emitted in this series lies in the ultraviolet region of the electromagnetic spectrum.

1 / lambda = R(h)* ( \frac{1}{(n1)^{2} } -   \frac{1}{(n2)^{2} })

                 = 109678 ( \frac{1}{1^{2} } -  \frac{1}{3^{2} } )

                 = 109678 (8/9)

   Lambda = 9 / (109678 * 8 )

                  = 102.6 * 10^{-9} m = 102.6 nm

To learn more about Lyman series here

brainly.com/question/5762197

#SPJ4

You might be interested in
Farming and fishing are ways of harvesting the oceans A.sodium chloride B.oil and natural gas C. Living resources D.nonrenewable
xeze [42]
I think it is C. but im not sure 

hope this helps
5 0
4 years ago
Read 2 more answers
VP 3.12.1 Part APart complete A cyclist going around a circular track at 10.0 m/s has a centripetal acceleration of 5.00 m/s2. W
viktelen [127]

Answer:

A) r = 20.0 m

B) T = 41.6 s

C) = 6.1 m/s²

Explanation:

A)

  • The centripetal acceleration is the one that explains that even though the cyclist is moving at a constant speed, his velocity is changing the direction all the time, keeping him around a circle.
  • This acceleration can be expressed as follows:

        a_{c} =\frac{v^{2}}{r} = \frac{(10.0m/s)^{2}}{r} = 5.00 m/s2  (1)

  • Solving for r:

       r = \frac{v^{2}}{a_{c} } = \frac{(10.0m/s)^{2}}{5.00m/s2} = 20.0 m  (2)

B)

  • We can apply the definition of linear velocity, remembering that the period is the time needed to complete an entire circle (T).
  • The arc around a circumference (the distance traveled) , is just 2*π*r, so applying the definition of linear velocity, we can write the following expression:

        v = \frac{\Delta s}{\Delta t} = \frac{2*\pi*r}{T} (3)

  • Solving  for T:

       T = \frac{\Delta s}{v} = \frac{2*\pi*r}{v} = \frac{2*\pi*265m}{40.0m/s} =41.6 s  (4)

C)

  • The centripetal acceleration of the car from B) can be found as follows:

        a_{c} =\frac{v^{2}}{r} = \frac{(40.0m/s)^{2}}{265m} = 6.1 m/s2   (5)

4 0
3 years ago
Calculate the ratio of the resistance of 12.0 m of aluminum wire 2.5 mm in diameter, to 30.0 m of copper wire 1.6 mm in diameter
alukav5142 [94]

Answer: 0.258

Explanation:

The resistance R of a wire is calculated by the following formula:

R=\rho\frac{l}{s}    (1)

Where:

\rho is the resistivity of the material the wire is made of. For aluminium is \rho_{Al}=2.65(10)^{-8}m\Omega  and for copper is \rho_{Cu}=1.68(10)^{-8}m\Omega

l is the length of the wire, which in the case of aluminium is l_{Al}=12m, and in the case of copper is l_{Cu}=30m

s is the transversal area of the wire. In this case is a circumference for both wires, so we will use the formula of the area of the circumference:

s=\pi{(\frac{d}{2})}^{2}  (2) Where d  is the diameter of the circumference.

For aluminium wire the diameter is  d_{Al}=2.5mm=0.0025m  and for copper is d_{Cu}=1.6mm=0.0016m

So, in this problem we have two transversal areas:

<u>For aluminium:</u>

s_{Al}=\pi{(\frac{d_{AL}}{2})}^{2}=\pi{(\frac{0.0025m}{2})}^{2}

s_{Al}=0.000004908m^{2}   (3)

<u>For copper:</u>

s_{Cu}=\pi{\frac{(d_{Cu}}{2})}^{2}=\pi{(\frac{0.0016m}{2})}^{2}

s_{Cu}=0.00000201m^{2}    (4)

Now we have to calculate the resistance for each wire:

<u>Aluminium wire:</u>

R_{Al}=2.65(10)^{-8}m\Omega\frac{12m}{0.000004908m^{2}}     (5)

R_{Al}=0.0647\Omega     (6)  Resistance of aluminium wire

<u>Copper wire:</u>

R_{Cu}=1.68(10)^{-8}m\Omega\frac{30m}{0.00000201m^{2}}     (6)

R_{Cu}=0.250\Omega     (7)  Resistance of copper wire

At this point we are able to calculate the  ratio of the resistance of both wires:

Ratio=\frac{R_{Al}}{R_{Cu}}   (8)

\frac{R_{Al}}{R_{Cu}}=\frac{0.0647\Omega}{0.250\Omega}   (9)

Finally:

\frac{R_{Al}}{R_{Cu}}=0.258  This is the ratio

3 0
3 years ago
The force of gravity is the strongest of the four known force fields. True False
Setler79 [48]
The answer is true as gravity is powerful than any other force
8 0
3 years ago
Read 2 more answers
A 36.3 kg cart has a velocity of 3 m/s. How much kinetic energy does the object have?
uysha [10]

Answer:

163.35

__________________________________________________________

<u>We are given:</u>

Mass of the object (m) = 36.3 kg

Velocity of the object (v) = 3 m/s

<u>Kinetic Energy of the object:</u>

We know that:

Kinetic Energy = 1/2(mv²)

KE = 1/2(36.3)(3)²            [replacing the variables with the given values]

KE = 18.15 * 9

KE = 163.35 Joules

Hence, the cart has a Kinetic Energy of 163.35 Joules

7 0
3 years ago
Other questions:
  • The magnitude of the electric current is inversely proportional to the _____ of the circuits in R2D2.
    11·1 answer
  • It takes a bus driver 30 min to pick up students from four stops. The last stop is at the corner of green street and route 70. T
    10·1 answer
  • An object floats on water with 80% of its volume below the surface. the same object when placed in another liquid floats on that
    5·1 answer
  • A woman is standing on a steep hillside in the rain and is not moving. A
    8·1 answer
  • A ball is dropped and falls with an acceleration of 9.8m/s2 downward. it hit the ground with a velocity of 49 m/s downward. how
    14·1 answer
  • Carnot engine A has an efficiency of 0.57, and Carnot engine B has an efficiency of 0.72. Both engines utilize the same hot rese
    10·1 answer
  • ) A hot air balloon along with its cargo has a mass of 4.0 x 105 kg, and it holds 7.0 x 10 5 m3 of hot air. It is floating at a
    14·1 answer
  • In a jigsaw classroom: A. students choose their own groups. B. students have to depend on one another to learn the required info
    11·1 answer
  • "175 years" is a measurement of a _____ quantity ?
    14·1 answer
  • Simon can climb up the balcony (5.11 m) in 4.2 seconds. What is Simon’s power?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!