The formula we use
here is:
radial acceleration =
ω^2 * R <span>
110,000 * 9.81 m/s^2 = ω^2 * 0.073 m
<span>ω^2 = 110,000 * 9.81 / 0.073
ω = 3844.76 rad/s </span></span>
<span>and since: ω = 2pi*f --> f = ω/(2pi)</span><span>
f = 3844.76 / (2pi) = 611.91 rps = 611.91 * 60 rpm
<span>= 36,714.77 rpm </span></span>
Explanation:
It is given that,
Mass of the tackler, m₁ = 120 kg
Velocity of tackler, u₁ = 3 m/s
Mass, m₂ = 91 kg
Velocity, u₂ = -7.5 m/s
We need to find the mutual velocity immediately the collision. It is the case of inelastic collision such that,


v = -1.5 m/s
Hence, their mutual velocity after the collision is 1.5 m/s and it is moving in the same direction as the halfback was moving initially. Hence, this is the required solution.
Answer:
Electron
Explanation:
In the picture, the letter A is pointing to an electron.