<h2>Mass of air in a room that measures 24.0 m by 15.0 m by 4.0 m is 1728 kg.</h2>
Explanation:
Density of air = 1.20 g/L = 
Size of room is 24.0m by 15.0 m by 4.0 m
Volume of room = 24 x 15 x 4 = 1440 m³
We know the equation
Mass = Volume x Density
Mass = 1440 x 1.2
Mass = 1728 kg
Mass of air in a room that measures 24.0 m by 15.0 m by 4.0 m is 1728 kg.
Answer:
This is false.
Explanation:
Heat rash develops when some of your sweat ducts clog. Instead of evaporating, perspiration gets trapped beneath the skin, causing inflammation and rash. Heat rash is usually self-limited, meaning it resolves on its own without treatment. Over-the-counter treatments such as calamine, hydrocortisone cream, itch preparations (such as Benadryl spray), or sunburn lotions can be used as skincare to treat the itching and burning symptoms. Heat rash usually goes away on its own within three or four days so long as you don't irritate the site further. Heat rash happens when the sweat glands get blocked. The trapped sweat irritates the skin and leads to small bumps.
Answer:
<h3>The answer is 8.91 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>8.91 m/s²</h3>
Hope this helps you
The June solstice in the Northern hemisphere is the summer solstice. The June Solstice in the Southern hemisphere is the winter solstice. The summer solstice is equivalent to the longest day while the winter solstice is equivalent to the shortest day. Therefore on the local sky, when is the June solstice we have have the longest day (longest path of sun in the sky) in the Northern hemisphere and the shortest day (shortest path of sun in the sky) in the Southern hemisphere.
Answer:
h’ = 1/9 h
Explanation:
This exercise must be solved in parts:
* Let's start by finding the speed of sphere B at the lowest point, let's use the concepts of conservation of energy
starting point. Higher
Em₀ = U = m g h
final point. Lower, just before the crash
Em_f = K = ½ m
energy is conserved
Em₀ = Em_f
m g h = ½ m v²
v_b =
* Now let's analyze the collision of the two spheres. We form a system formed by the two spheres, therefore the forces during the collision are internal and the moment is conserved
initial instant. Just before the crash
p₀ = 2m 0 + m v_b
final instant. Right after the crash
p_f = (2m + m) v
the moment is preserved
p₀ = p_f
m v_b = 3m v
v = v_b / 3
v = ⅓ 
* finally we analyze the movement after the crash. Let's use the conservation of energy to the system formed by the two spheres stuck together
Starting point. Lower
Em₀ = K = ½ 3m v²
Final point. Higher
Em_f = U = (3m) g h'
Em₀ = Em_f
½ 3m v² = 3m g h’
we substitute
h’=
h’ =
h’ = 1/9 h