Answer:
The gravitational force on the moon is less than on Earth because the strength of gravity is determined by an object's mass. The bigger the object, the bigger the gravitational force. Gravity is pretty much everywhere. We just feel it in different ways depending on our state of motion.
Explanation:
Hope this helped!!
Answer:
a = 2.22 [m/s^2]
Explanation:
First we have to convert from kilometers per hour to meters per second
![40 [\frac{km}{h}]*[\frac{1h}{3600s}]*[\frac{1000m}{1km}] = 11.11 [m/s]](https://tex.z-dn.net/?f=40%20%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A%5B%5Cfrac%7B1h%7D%7B3600s%7D%5D%2A%5B%5Cfrac%7B1000m%7D%7B1km%7D%5D%20%3D%2011.11%20%5Bm%2Fs%5D)
We have to use the following kinematics equation:

where:
Vf = final velocity = 11.11 [m/s]
Vi = initial velocity = 0
a = acceleration [m/s^2]
t = time = 5 [s]
The initial speed is taken as zero, as the car starts from zero.
11.11 = 0 + (a*5)
a = 2.22 [m/s^2]
The answer is:
It is a measure of the strength of the bonds between ions.
Lattice energy is an estimate of the strength of the bonds formed by ionic compounds.
The first two choices are wrong because it is actually the opposite.
- As the ion size increases, lattice energy <u>decreases</u>.
- As charge of ions increases, lattice energy <u>increases</u>
As for the other third option, it is wrong because lattice energy is the energy RELEASED not absorbed.
Organ system is the correct response hope this helps
Well depending on what every is pushing it with the force of (n) newtons its will stay at the same force rate but velocity and speed will change.