F=m*a
F=65 kg *9.8 m/s^2
F=637 N (Newtons) — this is the weight
Answer:
the moment of inertia with the arms extended is Io and when the arms are lowered the moment
I₀/I > 1 ⇒ w > w₀
Explanation:
The angular momentum is conserved if the external torques in the system are zero, this is achieved because the friction with the ice is very small,
L₀ = L_f
I₀ w₀ = I w
w =
w₀
where we see that the angular velocity changes according to the relation of the angular moments, if we approximate the body as a cylinder with two point charges, weight of the arms
I₀ = I_cylinder + 2 m r²
where r is the distance from the center of mass of the arms to the axis of rotation, the moment of inertia of the cylinder does not change, therefore changing the distance of the arms changes the moment of inertia.
If we say that the moment of inertia with the arms extended is Io and when the arms are lowered the moment will be
I <I₀
I₀/I > 1 ⇒ w > w₀
therefore the angular velocity (rotations) must increase
in this way the skater can adjust his spin speed to the musician.
In physics, power is defined as energy per unit time. You will also hear it described as work per unit time. The standard unit of measure for power is the watt, where a watt is defined as joules (energy) per second (time). This is expressed as a fraction as J/s. If you wanted to increase the power in any operation, you can either increase the energy (more joules) or reduce the time (fewer seconds).
Answer:
B. Light passes through a small opening
Explanation:
Diffraction is one of the properties of wave defined as the bending of wave around corners. It occurs mostly when waves passes through a tiny opening or slit. The type of waveform generated by the wave depends on the type of opening or slit that the medium passes through. The opening can be tiny or large.
Based on the definition, it can be inferred that the situation that causes light waves to diffract is when the light passes through a small opening. For example, the light of a torch passing through a tiny door hole is diffraction.