Uh it's c) 0.5 :), and for some reason i need to write 20 characters to explain it well, okay you need to divide speed/wavelength, that's it
Answer:
The angle for the forward Mach line is 19.47°
The angle for the rearward Mach line is 5.21°
Explanation:
From table A-1 (Modern Compressible Flow: with historical perspective):
(M₁ = 3)
If Po₁ = Po₂

Table A-1:

Table A-5:
v₁ = 49.76°
μ₁ = 19.47°
v₂ = 60.55°
μ₂ = 16°
θ = 60.55 - 49.76 = 10.79°
The angle for the forward Mach line is:
μ₁ = 19.47°
The angle for the rearward Mach line is:
θr = μ₂ - θ = 16 - 10.79 = 5.21°
Using lens equation;
1/o + 1/i = 1/f; where o = Object distance, i = image distance (normally negative), f = focal length (normally negative)
Substituting;
1/o + 1/-30 = 1/-43 => 1/o = -1/43 + 1/30 = 0.01 => o = 1/0.01 = 99.23 cm
Therefore, the object should be place 99.23 cm from the lens.
Answer:
The acceleration of the object is
Explanation:
Given:
Initial velocity of object
= 200 feet/second
Final velocity of object
= 50 feet/second
Time of travel = 5 seconds
To calculate acceleration of the object we will find the rate of change of velocity with respect to time.
So, acceleration
is given by:

where
represents final velocity,
represents initial velocity and
is time of travel.
Plugging in values to evaluate acceleration.



The acceleration of the object is
(Answer). The negative sign shows the object is slowing down.