The molar mass of Na₂SO₄ -
2 x Na - 2 x23 = 46
1 x S - 1 x 32 = 32
4 x O - 4 x 16 = 64
total = 46 + 32 + 64 = 142 g/mol
the molarity of solution - 2.0 M
in 1 L of solution , 2.0 moles
Therefore in 2.5 L - 2 mol/L x 2.5 L = 5 mol
then the mass of Na₂SO₄ required = 142 g/mol x 5 mol = 710 g
The moles which were measured out is calculated using the following formula
moles = mass/molar mass
molar mass of CuBr2.4H20 = 63.5 Cu + ( 2 x79.9) br + ( 18 x4_) h20 = 295.3 g/mol
moles is therefore= 5.2 g/ 295.3 g/mol= 0.0176 moles
HCl and NaOH react in a 1:1 ratio, meaning that 1 H+ from HCl will react with 1 OH- from NaOH. Knowing this, and that molarity is mol/liter, all we need to do is use what we have available. First we must find the mols of HCl in our solution, so we set up the following equation in the following steps:
1. 24.75mL x (0.359mol NaOH / 1000mL) = 8.885 x 10^-3mol NaOH
This is done in order to find the mols of NaOH to convert to mols of HCl.
2. 8.885x10^-3mol NaOH x (1 mol HCl/1mol NaOH) = 8.885 x 10^-3mol HCl
Here we just used the mols of NaOH we found to convert to mols of HCl using the 1:1 ratio described earlier.
From the mols of HCl all we have to do is divide by the amount of liters in the solution. Since we started with 10mL HCl and added 24.75mL NaOH, the total volume is 34.75mL = 0.03475L. So:
8.885 x 10^-3mol HCl/0.03475L = 2.557 x 10^-1M HCl
However, this is the molarity of the HCl and NaOH solution, not the original HCl solution. Using the dilution equation M1V1=M2V2, we can solve for the original molarity.
M1 = the molarity of our HCl in the titrated mixture (2.557 x 10^-1M HCl)
V1 = the total volume that our mixture has (34.75mL = 0.03475L)
M2 = what we're trying to find
V2 = the amount of the original HCl that we had (10mL = 0.010L)
Simply solving for M2 gives us:
M2 = (M1V1) / V2 or:
M2=((2.557 x 10^-1) x 0.03475L) / 0.010L = 8.89 x 10^-1M HCl. That is your answer.
2.5LX2 M=5 moles
As Molarity X Volume= Total Number of Moles