1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexandra [31]
3 years ago
7

If we assume that, in the African savanna, the predator population remains constant, what other, nonmobile, factor would influen

ce the antelope population?
Physics
1 answer:
RSB [31]3 years ago
7 0
The food chain system would also affect it. If the antelopes don't have the right food or a low supply of it they might not stay in that area.
You might be interested in
Three kids are riding on a snow sled traveling horizontally without friction at 19.8 m/s. The masses of Kid A, B, and C are 42.8
Kamila [148]

Answer:

34.6 m/s

Explanation:

From conservation of momentum, the sum of initial and final momentum are equal. Momentum is a product of mass and velocity. Initial mass will be 42.8+31.5+25.9=100.2 kg

Final mass will be 31.5+25.9=57.4 kg

From formula of momentum

M1v1=m2v2

Making v2 the subject of the formula then

V2=\frac {M1v1}{m2}

Substitute 100.2 kg for M1, 19.8 m/s fkr v1 and 57.4 kg for m2 then

V2=\frac {100.2 kg\times 19.8 m/s}{57.4 kg}=34.56376 m/s\approx 34.6 m/s

4 0
3 years ago
NEED HELP ASAP!!!!
podryga [215]
The answer is B
I rhink
6 0
3 years ago
Two particles with masses 2m and 9m are moving toward each other along the x axis with the same initial speeds vi. Particle 2m i
s2008m [1.1K]

Answer:

The final speed for the mass 2m is v_{2y}=-1,51\ v_{i} and the final speed for the mass 9m is v_{1f} =0,85\ v_{i}.

The angle at which the particle 9m is scattered is \theta = -66,68^{o} with respect to the - y axis.

Explanation:

In an elastic collision the total linear momentum and the total kinetic energy is conserved.

<u>Conservation of linear momentum:</u>

Because the linear momentum is a vector quantity we consider the conservation of the components of momentum in the x and y axis.

The subindex 1 will refer to the particle 9m and the subindex 2 will refer to the particle 2m

\vec{p}=m\vec{v}

p_{xi} =p_{xf}

In the x axis before the collision we have

p_{xi}=9m\ v_{i} - 2m\ v_{i}

and after the collision we have that

p_{xf} =9m\ v_{1x}

In the y axis before the collision p_{yi} =0

after the collision we have that

p_{yf} =9m\ v_{1y} - 2m\ v_{2y}

so

p_{xi} =p_{xf} \\7m\ v_{i} =9m\ v_{1x}\Rightarrow v_{1x} =\frac{7}{9}\ v_{i}

then

p_{yi} =p_{yf} \\0=9m\ v_{1y} -2m\ v_{2y} \\v_{1y}=\frac{2}{9} \ v_{2y}

<u>Conservation of kinetic energy:</u>

\frac{1}{2}\ 9m\ v_{i} ^{2} +\frac{1}{2}\ 2m\ v_{i} ^{2}=\frac{1}{2}\ 9m\ v_{1f} ^{2} +\frac{1}{2}\ 2m\ v_{2f} ^{2}

so

\frac{11}{2}\ m\ v_{i} ^{2} =\frac{1}{2} \ 9m\ [(\frac{7}{9}) ^{2}\ v_{i} ^{2}+ (\frac{2}{9}) ^{2}\ v_{2y} ^{2}]+ m\ v_{2y} ^{2}

Putting in one side of the equation each speed we get

\frac{25}{9}\ m\ v_{i} ^{2} =\frac{11}{9}\ m\ v_{2y} ^{2}\\v_{2y} =-1,51\ v_{i}

We know that the particle 2m travels in the -y axis because it was stated in the question.

Now we can get the y component of the  speed of the 9m particle:

v_{1y} =\frac{2}{9}\ v_{2y} \\v_{1y} =-0,335\ v_{i}

the magnitude of the final speed of the particle 9m is

v_{1f} =\sqrt{v_{1x} ^{2}+v_{1y} ^{2} }

v_{1f} =\sqrt{(\frac{7}{9}) ^{2}\ v_{i} ^{2}+(-0,335)^{2}\ v_{i} ^{2} }\Rightarrow \ v_{1f} =0,85\ v_{i}

The tangent that the speed of the particle 9m makes with the -y axis is

tan(\theta)=\frac{v_{1x} }{v_{1y}} =-2,321 \Rightarrow\theta=-66,68^{o}

As a vector the speed of the particle 9m is:

\vec{v_{1f} }=\frac{7}{9} v_{i} \hat{x}-0,335\ v_{i}\ \hat{y}

As a vector the speed of the particle 2m is:

\vec{v_{2f} }=-1,51\ v_{i}\ \hat{y}

8 0
3 years ago
If an electron is released at PP , what is the magnitude of the net force that these rods exert on it?
pishuonlain [190]

The magnitude of the net force that the rods exert after an electron is released at point P is 2.885 × 10⁻¹⁵ N.

Given values:

Length of non-conducting rod, l = 1.20 m

Charge on positive rod, +Q = +2.50 μC = +2.50 × 10⁻⁶ C

Charge on negative rod, -Q = -2.50 μC = -2.50 × 10⁻⁶ C

Distance from point P of each rod, x = 60 cm = 0.60 m

Calculation of Net electric force exerted on point P:

Consider an electron released at point P, then the net electric force exerted will be given as:

F = e. E_net       - ( 1 )

Step 1:

The net electric field value is given as:

E_net  = E₁ cos Φ + E₂ cos Φ      

           = 2E₁ cos Φ                  -( 2 )

where, E₁ & E₂ are electric fields due to positive and negative rod                

            respectively.

            Φ is phase angle

Step 2:

The electric field due to positive rod is given as:

E₁ = k (λ/r)             - ( 3 )

where, k is Coulomb's force constant

            λ is linear charge density

            r is distance between point P and half of the rod.

Now, the linear charge density is given as:

λ = Charge/length = Q/x

The value of r is given as:

r = √x²-a²

where, x is length of rod

           a is half length of rod

Applying values in above equation, we get:

r = √x²-(x/2)²

r = √(1.20 m)²-(1.20/2)²

  = √1.08

  = 1.04 m

Substituting all the determined values in equation 3 we get:

E₁ = k (λ/r)

   = k [(Q/x)/r]

   = k [ Q/xr ]

   = (9×10⁹ Nm²/C²) [ |+2.50×10⁻⁶ C|/(1.20 m)(1.04 m)]

   = 1.803×10⁴ N/C

Step 3:

Similarly, the electric field due to negative rod is given as:    

E₂ = k [ Q/xr ]

    = (9×10⁹ Nm²/C²) [ |-2.50×10⁻⁶ C|/(1.20 m)(1.04 m)]

    = 1.803×10⁴ N/C

Step 4:

Consider equation 2:

E_net  = 2E₁ cos Φ

From the figure we get the phase angle as:

Φ = tan⁻¹ (0.60 m/0.60 m)

   = tan⁻¹ ( 1 )

   = π/4  

Now, the electric field produced due to each rod is equal and mutually perpendicular. Thus, the net electric field after applying values can be calculated as:

E_net = 2(1.803×10⁴ N/C) cos π/4

          = 2(1.803×10⁴ N/C) (0.5)

          = 18030 N/C

Step 5:

Consider equation 1 :

F = e. E_net

where, e is charge on an electron

Applying values in above equation we get:

F = (1.6 × 10⁻¹⁹ C)(18030 N/C)

  = 2.885 × 10⁻¹⁵ N

Therefore, the magnitude of the net force that the rods exert after an electron is released at point P is  2.885 × 10⁻¹⁵ N.

Learn more about electric force here:

<u>brainly.com/question/1634182</u>

#SPJ4      

8 0
2 years ago
Can someone explain to me how to answer this problem in simple ways? (I get really confused when it comes to math) A communicati
pishuonlain [190]
When I find a problem like this, I find it helpful to think about what I know and what equation will help me.

The question tells us the frequency of the wave (5 \times 10^{-9}) Hz. We want to work out the wavelength. What equation links these two quantities?

Wave Speed = Frequency x Wavelength
(we know all electromagnetic waves travel at the speed of light in a vacuum)

(3 \times 10^8) = (5 \times 10^{-9}) \times \lambda
and then divide by (5 \times 10^{-9}) to get the wavelength.

Wavelength = 6 \times 10^{16} m<u />
4 0
4 years ago
Other questions:
  • An automobile starts from rest and travels down a straight section of road. The distance s (in feet) of the car from the startin
    5·1 answer
  • Fully describe or explain the solid state of matter. You should include at least 5 ways to characteristics or descriptors that p
    9·1 answer
  • Two charged objects are separated by some distance. the charge on the first object is greater than the charge on the second obje
    5·2 answers
  • A light-rail commuter train blows its 200 Hz horn as it approaches a crossing. The speed of sound is 339 m/s. (a) An observer wa
    5·1 answer
  • Yosef is playing with different kinds of rubber bands. Some are very narrow and some are quite wide. Yosef is curious about the
    13·2 answers
  • Pea plants have 2 advantages as genetic specimens:<br>​
    7·1 answer
  • A truck is speeding up as it travels on an interstate. The truck's momentum (in kg · m/s) is proportional to the truck's speed (
    8·1 answer
  • Water is kept in a vessel at a temperature of 100°C. What would happen if a metal ball having a temperature of 30°C is dropped i
    7·1 answer
  • 5. He slept for eight hours. This sentence has
    13·2 answers
  • Answer ASAP and only if you know its correct
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!