Answer:
rotates faster
Explanation:
A huge rotating cloud of particles in space gravitate together to form an increasingly dense ball As it shrinks in size, the cloud rotates faster. Because Angular momentum is conserved, so when it shrinks the moment of inertia decreases, then angular speed must increase. So it rotates fast.
Answer:
The difference in the length of the bridge is 0.42 m.
Explanation:
Given that,
Length = 1000 m
Winter temperature = 0°C
Summer temperature = 40°C
Coefficient of thermal expansion 
We need to calculate the difference in the length of the bridge
Using formula of the difference in the length

Where,
= temperature difference
=Coefficient of thermal expansion
L= length
Put the value into the formula


Hence, The difference in the length of the bridge is 0.42 m.
<span> most common in coastal areas around the gulf of mexico is mostly by river
</span>
Answer:
Option 3. The tennis ball began from rest and rolls at a rate of 14.7 m/s safer 1.5 seconds.
Explanation:
To know the the correct answer to the question, it is important that we know the definition of acceleration.
Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:
a = (v – u) /t
Where
a => acceleration
v => final velocity
u => Initial velocity
t => time
With the above information in mind, let us consider the options given in the question above to know which conform to the difinition of acceleration.
For Option 1,
We were told that the tennis ball has the following:
Distance = 4 m
Time = 1.5 s
This talks about the speed and not the acceleration.
Speed = distance / time
For Option 2,
We were only told about the average speed and nothing else.
For Option 3,
We were told that the tennis ball have the following:
Initial velocity (u) = 0 m/s
Final velocity (v) = 14.7 m/s
Time = 1.5 s
This talks about the acceleration.
a = (v – u) /t
For Option 4,
We were only told that the tennis rolls to the right at an average speed. This talks about the average velocity. We need more information like time to justify the acceleration.
From the above illustrations, option 3 gives the correct answer to the question.