This problem could be solved through the Graham’s law of
effusion (also known as law of diffusion). This law states that the ratio of
the effusion rate of the first gas and effusion rate of the second gas is
equivalent to the square root of the ratio of its molar mass. Thus the answer
would be 0.1098.
The answers are true, true, false, true, and false.
Answer:
Harmony is correct, because Mendeleev’s model made predictions that came true.
Explanation:
Mendeleev published periodic table.
Mendeleev also arranged the elements known at the time in order of relative atomic mass, but he did some other things that made his table much more successful.
Our answer is : Harmony is correct, because Mendeleev’s model made predictions that came true.
Answer:

Explanation:
We know we will need an equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 58.12 44.01
2C₄H₁₀ + 13O₂ ⟶ 8CO₂ + 10H₂O
m/g: 9.511
1. Moles of C₄H₁₀

2. Moles of CO₂
The molar ratio is 8 mol CO₂:2 mol C₄H₁₀

3. Mass of CO₂
